DE-FOA-0002022

FISCAL YEAR 2019 H2@SCALE FUNDING OPPORTUNITY ANNOUNCEMENT

TEAMING PARTNER LIST

Updated February 28, 2019

* By facilitating this Teaming Partner List, EERE does not endorse or otherwise evaluate the qualifications of the entities that self-identify themselves for placement on the Teaming Partner List.

Organization	Contact Name	Organization	Area of Technical Expertise	Description of Capabilities	Contact Information
		Туре			
NextEnergy	Tim Slusser	Non-profit	NextEnergy has expertise with the	Testing, project and research	Address: 461 Burroughs
			siting, installation, commissioning, and	development, project	Detroit, MI 48202
			operation of distributed resources and	management, business and	Email: <u>tims@nextenergy.org</u>
			energy systems for electrified mobility	ownership model development,	Phone: (313) 833-0100 x120
			(DC fast, bi-directional EV charging, and	stakeholder engagement (public	
			hydrogen fueling). We have designed,	and private), and consultation	
			installed, and commissioned a 5k psi	with AHJ for approval and	
			hydrogen refueling station at our	operation.	
			facility in Detroit. We have also		
			managed a methanol-based reformer		
			project for hydrogen generation as well		
			as installed and commissioned EV		
			charging stations up to 100kW.		
Ames	Viktor Balema	DOE National	Materials for hydrogen storage and	- Synthesis of inorganic materials	Address: 255 Spedding, 2416
Laboratory		Laboratory	water splitting; materials and products	and metallic alloys, including wet	Pammel Dr., Ames, IA 50011-3020
		(FFRDC),	development and scale up	and solid state chemistry,	Email: vbalema@ameslab.gov
		academic,		mechanochemistry, and thermal	Phone: (515) 294-8033
		government		processing	
				- Full suite of materials	
				characterization techniques	
				(Ames Laboratory's	
				capabilities: https://www.amesla	
				b.gov/dmse)	

				 Laboratory-scale electrochemistry; testing of electrode performance Advanced characterization of hydrogen absorption-desorption performance of materials as function of temperature and pressure Scale up of inorganic and hybrid materials through Ames Laboratory's Materials Preparation Center (https://www.ameslab.gov/mpc) 	
GVD Corporation	Chris Thompson	Small business	Vacuum deposited polymer/oxide coatings, thin films, surface modification	Development of vacuum deposited polymer films that are ideal for surface modification of polymer and elastomeric substrates. Our current product portfolio includes fluorocarbon materials with hydrophobic and superhydrophobic properties, flexible gas barrier materials, and ion conducting polymers with high thermal and hydrolytic stability. In DOE- supported research, GVD has developed a gas barrier coating, designed to limit ingress of hydrogen gas into and out of elastomeric seals for use in high temperature high pressure applications. GVD also has developed a lubricious coating that improve the wear rates of	Address: 45 Spinelli Pl. Cambridge, MA 02138 Email: <u>cthompson@gvdcorp.com</u> Phone: 617-661-0060, ext 136

				rigid seals in hydrogen compression and dispensing systems.	
Purdue University	Shripad Revankar	Academic Institute, Non- Profit	Materials for water splitting- hydrogen generation; Materials for hydrogen storage, modeling, scale-up; Plant optimization	Synthesis of catalysts, materials and metallic alloys, including wet and sol d state chemistry, and thermal processing; materials characterizations, testing facilities for electrochemical processes, electrodes and membranes, high pressure hydrogen absorption-desorption testing as function of temperature. Various advanced facilities at Purdue University including nano-technology centers; System modeling, scale- up and optimization methods	Address: 400 Central Drive Purdue University West Lafayette, In 47907 Email: <u>shripad@purdue.edu</u> Phone: 765-409-7829
Southwest Research Institute	Tim Allison	Non-profit	 -Machinery development (including hydrogen compression and combustion) -Hydrogen storage -Fuel cell materials and assemblies -Separation membranes for hydrogen production -Codes and standards for hydrogen delivery -Electrochemical and solar to hydrogen generation -Solid state hydrogen carriers 	SwRI is an independent non- profit R&D institute focusing on applied R&D. We have existing hydrogen compression and combustion test loops and experience in designing, fabricating, and operating demonstration-scale and pilot- scale systems (kW-scale up to 10 MWe) for energy conversion.	Address: 6220 Culebra Rd, San Antonio TX 78238 Email: <u>tim.allison@swri.org</u> Phone: 210-522-3561