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Disclaimer

This work was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their -
employees, nor any of their contractors, subcontractors or their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or any third party’s use or the results of such use of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof or its contractors or subcontractors. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or any agency thereof,
its contractors or subcontractors.
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Executive Summary

This R&D roadmap is part of the U.S. Department of Energy’s (DOE’s) pledge to increase
microelectronics’ energy efficiency 1,000-fold in two decades. With rapidly emerging challenges
such as the increase in electricity use of data centers, innovations that exponentially increase
energy efficiency are urgently needed to put microelectronics’ electricity use on a more
sustainable path (see Figure ES-1). Just as President Kennedy did with his moonshot goal 60
years ago, DOE pledged to achieve this energy efficiency goal not because it is easy but
because it is hard.

Background

Since the invention of the integrated circuit or “chip” 65 years ago, semiconductor-based
electronics, or microelectronics, have enabled growth of information technology (IT)—
computing, communication, and other electronics applications. Chip manufacturers now layer
billions of semiconductor-based switches (i.e., transistors, the foundational unit of electronic
devices) onto silicon to make the microelectronics that are essential for modern life. IT growth in
the last century was propelled forward by the biennial doubling of transistor density on chips,
which led to greater performance and lower cost per function. This tradition of exponential
performance improvements is why much of the semiconductor industry already sets exponential
technical goals. For example, the initial pledge signer, Advanced Micro Devices (AMD), had
already set the goal to increase the efficiency of its chips 30 times by 2025; since signing DOE’s
pledge, AMD has increased its goal to 100 times by 2027.

As tranS|stolrs \.N?Ire mlnlaturlzed, chip 1000 T 2023 Energy Consumption*

power density initially remained = [rcoccscccecsece e TR e eeet e e cnco e
constant (Dennard scaling), leading
to more than doubling energy
efficiency biennially. By 2005,
however, this biennial efficiency
doubling began to slow markedly as it
reached certain physical limits. The
slowing of efficiency doubling coupled
with the rapid rise in energy and
computation-intensive IT applications, oil. : : | ;
has led to sharp increases in global 2000 2010 2020 2030 2040

*Source: Statista."Primary Energy Consumption Worldwide from 2000 to 2023 (in exajoules).” 2024
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Energy Efficiency Scaling for Two Decades

The U.S. Department of Energy’s Advanced Materials and Manufacturing Technologies Office
(AMMTO) launched a national initiative with industry partners, national labs, and academia,
called Energy Efficiency Scaling for Two Decades (EES2) in 2022. This ambitious program aims
to double the energy efficiency of microelectronics biennially, targeting a 1,000-fold
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improvement over two decades. A key component of EES2 is this version 1.0 roadmap, the first
in a series of research, demonstration, and demonstration (RD&D) roadmaps. This document is
a product of extensive literature review and energy analysis, collaboration meetings between
nine working groups, and expert input during the writing process. The working groups met
monthly, with the organizing committee engaging in literature review and analysis to prepare for
the following meeting.

The EES2 roadmap focuses on the largest and fastest growing IT
energy user, the “compute stack” (see Figure ES-2), which
comprises everything from devices to software. The stack shown is
from the seminal DOE report Basic Research Needs for
Microelectronics (DOE Office of Science, 2018), which extended
the notion of co-design from simply designing hardware and
software together to specifically co-designing adjacent layers of the
hardware with adjacent layers of the software. This roadmap
examines innovative technologies co-designed by experts on

| ARCHITECTURE |

INTEGRATION

different parts of the stack that can exponentially increase

computing energy efficiency. This roadmap is a first step in a multi-

year research effort to develop and deploy portfolios of cutting-edge "E}’.';%E.%"
microelectronics technologies that are 10-, 100-, and even 1,000-

times more energy efficient than the technologies they replace. PHYSICS
Alone, none of the technologies will achieve the industry-wide

biennial efficiency doubling leading to the 21 1,000-times goal. A

DOE’s Undersecretary for Energy and Science and the now sixty-
five other external industry-based EES2 pledgers were inspired to Figure ES-1. Compute
work toward this goal and join the roadmap effort on the strength of ~ Stack- Zo‘,’rce’ D;)’:;;mce of
DOE’s 2021-2022 “Semiconductor R&D for Energy Efficiency” clence:

virtual workshop series and its 2022 sponsored assessment of

computing energy use (Shankar and Reuther 2022), which contributed additional insight on how
the stack could be co-designed with rigorous analysis of computing performance using the
metrics of energy per bit, per instruction, and per application.

Strategies for Efficiency First

To directly support the goals of EES2, co-design strategies are prioritized to optimize for
efficiency first. Simply put, this means that where multiple properties are desired for a given
technology solution, energy efficiency should be the first property for optimization in the co-
design. In addition, three sub strategies emerged related to the three different energy metrics for
the near-, mid-, and long-term, as shown in Figure ES-2.

Near-Term: Optimization of Energy per Instruction/Operation

EES2-sponsored analysis by Stanford Linear Accelerator Center (SLAC) (Shankar and Reuther
2022) showed large variation in energy per instruction or operation for different types of
computational tasks. This suggests that a chip design strategy that ensures instruction
complexity for a given task is as low as possible is the correct “efficiency first” hardware co-
design strategy. Graphic processing units (GPUs) for gaming and artificial intelligence (Al) are a
successful example of an approach of this type.
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Mid-Term: Device-Level Innovations To Minimize Energy Use per Bit

Because they are so foundational, innovations at the device level, especially with transistors,
are critical. In the near- and mid-term, the EES2 roadmap highlights innovations that sharpen
the subthreshold swing slope and lower switching voltage, such as tunnel field-effect transistors
(TFETSs). In the mid- to long-term, device level innovations from quantum and nature-inspired
computing will be critical for widespread advances from 100x to 1,000x energy efficiency.

Long-Term: Full-Stack Software-Driven Co-design To Minimize Energy per Application

The goal of full-stack co-design has yet to be implemented. This strategy is accelerating toward
this goal by focusing on a subset of full-stack co-design that is software-driven, requiring that
hardware developers understand what the software needs to do, and software designers
understand the needs of hardware. Full implementation would require a major change in
pedagogy and curriculum since software and hardware engineers have become more and more
specialized in recent decades. But in the meantime, steps in this direction include specifying in
algorithms that do not require high precision to save energy. Figure ES-2 illustrates the
interaction between different layers of the compute stack, the timeline for the innovation, and the
correlated energy metric.

Software & Algorithms
LONG-TERM
Software-driven Advanced Packaging
full stack and
electric/thermal/ System-on-Chip NEAR-TERM
mechanical co- (e.g., accelerator, digital signal processor, etc.)
design geared f\fﬁcien_c%—ﬁrgt cq—desfign starts
toward reducing - ¢ ere, with reduction of energy
the largest energy Heltnet':gg;'t';us A:';‘i’t";tfusr‘es per instruction tackling memory
per application bottleneck.
requires new
design tools MID-TERM
(including Al )
tools). Materials Discovery and accelerated
&Devices manufacturing R&D are needed
to continue reducing energy per
- bit.

Figure ES-2 Relationship of compute stack elements to achieving energy efficiency goals with different time
frames

Expanding Co-Design for the Compute Stack—> Stack Working Groups

When the concept of co-design was first applied to microelectronics, it simply meant the
integration of hardware and software design in computing. Compute is the largest
microelectronics system energy user—hence the focus of this roadmap. As the complexity of
the compute stack grew (see Figure ES-3 left side), numerous subcategories of hardware and
software were developed. In order to achieve the benefits of co-design envisioned by DOE in its
seminal Basic Research Needs for Microelectronics (2018) report, co-design for energy
efficiency must ensure that adjacent elements of the stack work together. AMMTO’s DOE
partners in SC defined co-design in this 2018 report as “where each of the technical abstraction
layers in modern computer system design (the compute stack), from fundamental materials
research through applications, inform and engage other abstraction layers.” Furthermore, “co-
design activities largely occur between adjacent technology abstraction layers (e.g., between
materials and devices or computer architects and software designers).” Therefore, the initial four
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EES2 working groups (WGs) were assembled, as shown in Figure ES-3, to ensure co-design
among adjacent layers.

Pledger Experience Led to Inclusion of Enabling Layers of Co-Design

EESZ2 industry and laboratory pledging partners with experience in the rapidly growing data
center sector also urged the inclusion of power in the WGs’ co-design approach. Thus, a Power
and Control Electronics WG was added. In addition, since the National Institute of Standards
and Technology (NIST) had been involved with pre-EES2 efficiency efforts—and the EES2
team knew the importance of metrology to keep track of efficiency goals—a Metrology and
Benchmarking WG was included from the beginning. Finally, the analysis EES2 was conducting
in parallel with the WGs showed that manufacturing energy use, complexity, and chemical
intensity also had begun to rise rapidly in recent years, so a Manufacturing Energy Efficiency
and Sustainability WG was included.

Early in the process, the working groups realized that past efforts at co-design had not generally
involved software for hardware, such as the proprietary electronic design automation (EDA)
software used to design circuits. To rectify this issue, the Circuits and Architectures WG began
to meet with other WGs. In 2018, the co-design was mainly between adjacent layers, but by
2023, it had become clear that every aspect of the compute stack, plus every aspect of the
enablers, needed to be aligned to minimize energy use.

STACK ENABLER

]
i oM Power and Control
Materla_lls and = ‘ﬁ)‘ .
Devices IO Electronics
Circuits and l:lﬂ Manufacturing Energy
Architectures {c}}““ Efficiency and Sustainability
%,
) ? JomHT
Advanced Packaging and f‘ﬁ A Y Metrology and
Heterogeneous Integration ol _ﬂ (__ Benchmarking
Blee— R

Algorithms and é rg\fé\bp Education and Workforce

Software 8@% Development

Figure ES-3. Organization of the EES2 working groups

With the help of cross cutting pledgers such as SRC and IEEE (the world’s largest professional
society), an Education and Workforce Development WG was formed. A co-design focus
between working group areas is essential to make the rapid efficiency progress needed for
biennial efficiency doubling and to ensure that the effort is both technically feasible and
commercially viable.
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The general scope of each WG is described in the following section.

Compute Stack Co-Desigh Working Groups

The Materials and Devices group tackled energy efficiency through materials and devices,
such as carbon nanotubes and spintronic memory. This included scalability, thermal
management, and interface issues in current materials.

The Circuits and Architectures group worked to overcome the challenges of slowing planar
geometric scaling of transistors and memory. This group pioneered alternative, energy-efficient
designs in processors and memory systems, including compute-in-memory technologies.

The Advanced Packaging and Heterogeneous Integration group at the next level up in the
compute stack, worked on advanced thermal management techniques, and optimizing data
movement strategies such as optical interconnects.

The Algorithms and Software group emphasized software-driven co-design and were inspired
by natural systems such as dragonflies and human brains to benchmark neuromorphic
algorithms matched directly with accelerator hardware.

Table ES-1. Condensed Focus Areas for Energy Efficiency and their Manufacturing Challenges & Solutions?

Focus Areas for Energy Efficiency Manufacturing Challenges & Solutions

Materials and Devices (Mid-Term)

Innovate in materials such as 2D materials, Address production and integration challenges by investing in
carbon nanotubes (CNTs), and ferroelectric scalable high-quality material manufacturing and creating
materials for future CMOS alternatives. industry-wide standards and protocols.

Circuits and Architectures (Near-Term)

Prioritize advanced €lectronic design automation (EDA) and
Enhance energy efficiency in compute new architectures integrated with algorithms to optimize power
architectures and memory technologies. distribution and increase energy efficiency, backed by
continued investment in novel device technologies.

Advanced Packaging and Heterogenous Integration (Near-Term)

Pair novel technologies with state-of-the-art

Develop vertically integrated, energy-efficient processors/memories to show durability and enhance intra-
3D technology stacking. chip energy efficiency, improving EDA for system-level cooling
and interconnect scaling.

Algorithms and Software (All Time Scales but Especially Long-Term)
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Innovate in machine learning algorithms and
software that efficiently support diverse
computing architectures.

Develop machine learning optimization through meta-learning
and exploit massively parallel computing systems more
effectively, using advanced parallelization of code.

a For complete list, refer to Table 85.

Crosscutting Co-Design Working Groups (Also Known as Enablers)

The Power and Control Electronics group focused on enhancement and innovation of power
delivery systems on chip as well as in energy intensive applications such as data centers.

The Manufacturing Energy Efficiency and Sustainability group looked at the correlation
between less efficient products and less efficient manufacturing processes to make them. The
group also explored other energy-related environmental impacts of manufacturing.

The Metrology and Benchmarking group defined measurement and benchmarking standards
necessary to evaluate emerging microelectronic technologies.

The Education and Workforce Development group took advantage of the compelling EES2
benefits to the planet for efforts to convince policy makers and potential new industry

employees.

Table ES-2. Condensed Focus Areas for Energy Efficiency and Their Grand Challenges and Solutions?

Focus Areas for Energy Efficiency

Manufacturing Challenges and Solutions

Power and Control Electronics (Very Near-Term)

Enhance power delivery and control across
microelectronics to data centers by migrating
loads to higher-efficiency regions and utilizing
renewable resources.

Develop resource-aware scheduling strategies and implement
advanced co-design tools to optimize power provisioning and
thermal management, reducing overall energy consumption.

Manufacturing Efficiency and Environmental Sustainability (Near-Term)

Improve manufacturing processes to lower
greenhouse gas emissions and energy
consumption.

Introduce alternative gases and processes with lower
environmental impacts and invest in alternate lithography
technologies like nanoimprint lithography (NIL) for energy-
efficient manufacturing.

Metrology and Benchmarking (All Time Scales)

Advance metrology by integrating Al/ML in
nondestructive, high-resolution techniques to
evaluate complex structures and materials
accurately.

Establish comprehensive benchmarking standards and
develop advanced metrology tools for real-time analysis,
bridging the gap between traditional methods and the needs
of emerging technologies.

Education and Workforce Development (All Time Scales but Especially Long-Term)
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Cultivate a skilled workforce attuned to the Align educational outcomes with industry needs, implement
demands of energy-efficient microelectronics targeted training programs, and promote inclusivity to build a
and sustainability. diverse workforce capable of driving global innovation.

@ For complete list, refer to Table 86.

Key Technologies Identified

Figure ES-4 graphically illustrates some promising technology options identified in this roadmap
by adjacent co-design approaches to the compute stack, sorted by working group.
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Figure ES-4. Key energy-efficient technologies for industry researchers to beat in each epoch

The figure illustrates one of two major criteria used by the working groups in evaluating
candidate EES2 technologies: factor of efficiency improvement based on energy metrics (e.g.,
energy per bit, energy per switch, memory access) compared to state-of-the-art technologies.
Note the semi-log tick marks where the efficiency factor increases logarithmically to the right.

Note that these technologies do not in any way represent a government plan for energy
efficiency. Rather these technologies and the technology areas from which they spring are
technologies with “energy efficiency to beat.” Rather than being a plan or even a forecast, the
roadmap seeks to provide benchmarks that will inspire technology developers to apply the
recommended efficiency first design principles and possibly prove wrong dire predictions for
future computing energy use.

Next Steps

This version 1.0 of the EES2 roadmap is the end of the beginning of a two-decade effort to take
energy efficiency scaling from historical fact to future reality. The demand for computing and the
critical need to curb emissions require an acceleration and expansion of current initiatives.
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In addition to the roadmap, DOE intends for the EES2 partners to begin a cycle of challenging
one another on increasingly ambitious energy efficiency goals. For example, AMD has already
begun to challenge the industry on Al chip efficiency—and a response from other Al chip
makers is hopefully forthcoming soon. Other non-roadmap EES2 activities planned for the
pledgers include the establishment of a testing facility to measure the relative efficiency of highly
energy-intensive software (e.g., Al training, Transformer) due to the emergence of many
different Al chip architectures. Such a testing facility would also verify the orders of magnitude
efficiency improvements of AMMTO and other government funded hardware, such as TFET and
neuromorphic chips.

Finally, AMMTO hopes that the EES2 partners will continue to document and learn from
microelectronics’ past and forecasted future ability to enable all sectors of the economy to
become more energy efficient and sustainable. EES2 partners will also continue to identify and
publicize the problems solved and the opportunities offered by the roadmap 1.0 and the analysis
performed for EES2. A surge in energy use forecasted for data centers is the first of many
challenges to which the EES2 community will forcefully respond. Future potential energy-use
surges related to communications (such as those that may accompany 6G+) will also be
identified, documented, learned from, and publicized by the EES2 community as it evolves from
a government-led organization to one that is privately led.

While this report documents myriad potential efficiency improvements across 55 technologies,
achieving their full benefits requires an integrated approach that emphasizes software-driven
co-design across the entire technology stack. Ultimately, EES2 hopes to reboot the energy
efficiency doubling pace of Dennard scaling doubling efficiency every two years—with the goal
of reaching 1,000 times more in the next 20 years.

Plans for roadmap 2.0 are already underway. As DOE and its partners recruit more industrial,
academic, and national laboratory members for the EES2 innovation ecosystem, the initiative
will not only have more policy impact, but it will also boast even broader technical expertise
among the WGs. Now that the first roadmap is published, EES2 will actively turn to broaden its
recruiting into new microelectronics application sectors, such as communications. In addition,
while EES2 started with electronics and electrons, it will also broaden to promising new
information carriers, such the photons used in optoelectronics and photonics. EES2 already
includes pledgers whose research includes long-term transformational technology areas such
as quantum computing as well as the latest advances in nature-inspired architectures. EES2 will
work with these pledgers to help recruit additional pledgers from their respective sectors and to
attract more volunteers for the version 2.0 WGs.

Although much can change before the start of version 2.0 of the roadmap in spring 2025, future
WGs will continue to build upon a solid base of peer-reviewed research while continuing to work
with EES2 pledgers to lower barriers toward immediate deployment of technologies for biennial
microelectronics energy efficiency doubling. This dual R&D and deployment strategy ensures
flexibility and responsiveness to emerging technologies and market shifts, thereby fostering a
sustainable evolution of the microelectronics sector.

As the EES2 Initiative continues to grow and build momentum for massive improvements in
computing energy efficiency, the EES2 team will work further with stakeholders in
microelectronics and related applications to develop the technology base and to assess
progress toward the goal every 2 years.
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This roadmap is not intended to serve as a forecast or to pick winners and losers among
technologies. Rather, it is the opening salvo in a new energy efficiency “space race,” where
instead of outer space, the EES2 team explores the fascinating realm of increasingly tiny and
ultra energy efficient information systems. The roadmap sets a high bar to challenge and
motivate technology developers and to counteract grim forecasts that humanity cannot achieve
the clean energy transition due to rising computing energy use trends. The semiconductor
industry’s inspiring past successes in improving energy efficiency indicate that ambitious EES2
efficiency goals can be met as well. Let’s do it now.
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1 Introduction

The semiconductor manufacturing industry makes the integrated circuits, or chips, that drive
innovation and productivity throughout the global economy. The U.S. Department of Energy
(DOE) has significant expertise and experience with the semiconductor industry and has led
related research on everything from specialized chips to artificial intelligence. Both DOE’s
semiconductor expertise and semiconductor-based technologies themselves are critical for its
missions in national security, scientific research, and clean energy technologies.

1.1 Background

The U.S. economy was damaged when southeast-Asia-dominated semiconductor supply chains
for chips were severely disrupted during the pandemic. For example, the Federal Reserve
estimated that, due to the chip supply shortage, the slowdown in U.S. automobile manufacturing
alone cost the U.S. economy nearly $240 billion, or more than 1% of the U.S. gross domestic
product (GDP). In response, the White House commissioned a Supply Chain Report that
included a report chapter on semiconductors led by DOE (Mann and Putsche 2022), which
showed that the U.S. semiconductor manufacturing industry had shrunk to only 10% worldwide
manufacturing. The chapter also showed that the last time the U.S. civilian government had
been involved in the semiconductor industry—in the 1990s, when it provided billions for the
SEMATECH consortium—the U.S. accounted for more than 37% of semiconductor
manufacturing. In August 2022, the Administration signed the CHIPS and Science Act into law.

As public support grew for government support of the domestic semiconductor industry, so did
discussions among federal agencies about investment in semiconductor research and
development (R&D). AMMTO'’s predecessor office--the Advanced Manufacturing Office—
sponsored a series of virtual workshops on Semiconductor R&D for Energy Efficiency. In
September 2022, DOE launched the Energy-Efficiency Scaling for 2 Decades (EES2) initiative
for the semiconductor industry and its major energy using applications. DOE’s intent in
developing EES2 was to have a simple goal to drive research progress. In November 2022,
DOFE’s Advanced Materials and Manufacturing Technologies Office (AMMTO) launched the
EES2 R&D Roadmap effort that resulted in this report.

This version 1.0 roadmap focuses on the largest and fastest growing semiconductor
application—computing. As detailed in the next section, the historical semiconductor scaling that
inspired energy-efficiency scaling applied only to chip energy use. With energy-efficiency
scaling, DOE hopes to drive innovation across the entire compute stack from transistors to
software. Subsequent roadmaps will apply this broad principle to other fast-growing
microelectronics-based applications, such as communications.

1.1.1 Moore’s Law

The semiconductor manufacturing industry is unique compared to traditional manufacturing
industries since its key product’s performance improvements—including the size, cost, density,
and speed of components over the past half century—increase exponentially. Hence, the
exponential trends of the semiconductor industry must be plotted on a semi-log-scale plot where
time in years on the horizontal axis is on a linear scale and the vertical axis is on a logarithmic
scale with each notch representing an order of magnitude increase. The classic example of
such a trend is Moore’s Law, where the number of transistors on an integrated circuit (IC) or
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chip doubles about every two years. While originally Moore's Law was simply an observation by
Intel founder Gordon Moore of a trend based on his experience in manufacturing—not a law of
physics—it has served the semiconductor industry well as a unifying benchmark. However,
Moore’s Law needed to evolve (e.g., from two-dimensional [2D] to three-dimensional [3D]) to
continue. Predictions beginning decades ago that Moore’s law was ending proved premature.
For example, in late 2023, chips were launched with more than 100 billion transistors,
continuing the biennial efficiency doubling trend.

1.1.2 Dennard Scaling and the Initiative

The scaling relationship that ended about two decades ago was Dennard scaling. When
transistors were planar (i.e., 2D), Robert H. Dennard showed that as the number of transistors
on a chip doubled, their power use remained constant. This doubling of transistors on a chip of
the same size does not increase the power it uses because power use stays in proportion with
area, while both voltage and current scale downward with length. As a result, energy efficiency
of chips following Moore’s Law doubled every 2 years until Dennard scaling ended.

Most experts say that Dennard scaling ended between 2005 and 2006. As the voltage needed
to switch the transistor steadily declined (as transistors used less power), it neared the limit
where random thermal noise could also cause unintentional switching (i.e., classical “leakage”
of current). Additionally, as transistor dimensions dropped to the nanoscale, quantum tunnelling
(i.e., quantum leakage) began to occur. Both types of leakage also cause the chip to heat up,
which further decreased its energy efficiency due to the additional energy needed to keep the
chip cool. The end of Dennard scaling was one of several factors that contributed to the
beginning of exponential growth in computing electricity use that became noticeable by 2010.

1.1.3 Why 20 Years? Why 1,000 Times?

During the three decades or so of Dennard scaling, semiconductor chips had biennial efficiency
doubling. Even after this, continuing innovation driven by Moore’s law maintained efficiency
doubling, although at a slower pace. The EES2 goal is based on the notion that a simple goal
such as Moore’s Law can be a driver of progress and a unifying theme for the industry. The 20-
year duration of the EES2 goal is a result of the desire to be 1,000 times more energy efficient
using the same efficiency doubling that worked previously for the industry. As shown in Table 1,
1,000 times (actually 1,024 times) is simply the mathematical result of doubling something 10
times: 219=1,024 over 20 years.

Table 1. 20 Years of Biennial Energy Efficiency Doubling

Year n=number doublings ‘ Energy Efficiency: 2n

2 1 2

4 2 4

6 3 8

7 ~10 times

8 4 16

10 5 32

12 6 64

13 ~100 times

14 7 | 128
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16 8 256
18 9 512
20 10 1,024 (~1,000 times)

The 1,000 times rationale is similarly straightforward based on the question: where do we want

to be in 20437 Figure 1 shows 1000 )
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lithography, and various other

microscale manufacturing processes. The EES2 initiative seeks to turn this innovation engine
toward efficiency. The EES2 Analysis, the EES2 predecessor workshops, and this roadmap
show that this can be done.

1.1.4 Linear Versus Exponential Growth

Understanding the distinction between linear and exponential growth is crucial for understanding
why computing and communication electricity use—currently still just a few percent of electricity
use—could very rapidly become difficult to sustain economically or environmentally. While linear
growth is intuitive and manageable, exponential growth is not. For example, if the doublings
shown in the rightmost column of Table 1 were instead for electricity growth, what seemed like a
nonproblem in years 1-10 would begin to become an issue in years 11-15 and become a
serious problem verging on emergency as the unit of growth doubled from 256 to 512 and
increased again to 1024 in years 16—20. Since exponential growth is so nonintuitive, key graphs
depicting exponential growth in this report (e.g., Figure 1 for Moore’s law and Figure 1 showing
the Semiconductor Research Corporation (SRC) analysis and the EES2 goals) show all the
zeros of the actual number rather than using shorthand exponential notation (e.g.,
1,000,000,000 rather than 10°). Space considerations prevent the avoidance of exponential
notation in many other key plots of the report, but readers are advised to keep Table 1 in mind
when interpreting them.

1.1.5 History of the Pledge and Pledgers

EES2 counters unsustainable exponential growth in electricity demand with exponential growth
in efficiency. The need for this concerted joint industry-government was first articulated on Jan.
12, 2022, when DOE announced its goal to increase microelectronics (and its applications’)
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energy efficiency by 1,000 times in 20 years or less. “Or less” is an important part of the goal
since preliminary EES2 analysis was already showing that the doubling time for Al computing
electricity use was beginning to shorten. From the outset, the EES2 team knew that the EES2
efficiency doubling time might need to shorten if demand accelerated. As a result, another key
part of the EES2 initiative involves partnering with data collection agencies (e.g., U.S. Energy
Information Administration [EIA]) on more comprehensive collection of microelectronic
applications’ (e.g., computing and communication) energy use. DOE also announced its intent
to work with industry on joint R&D road mapping based on DOE’s new concept of energy
efficiency scaling. DOE then developed the concept of the EES2 pledge to organize this effort.

By September 2022, DOE, together with an initial group of 20 other organizations, pledged to
cooperate on identifying solutions to drive energy efficiency scaling by developing the first EES2
roadmap and by the end of 2023. These partners also pledged to cooperate on updates needed
to the pledge and the roadmap and to catalyze deployment of the technology solutions identified
in the roadmap(s). The number of signatories of the EES2 cooperation pledge more than tripled
since then to 65 organizations at the time of this writing, with the current EES2 Pledgers listed in
the acknowledgements of this report.

The EES2 cooperation pledge reads as follows.
We the undersigned agree to cooperate:

e To document and learn from the extraordinary record of microelectronics’, including
power electronics’, energy efficiency, such as increases greater than 1,000,000 times in
energy efficiency since the invention of the transistor nearly 75 years ago.

o To document and learn from microelectronics’ past and forecasted future ability to
enable all sectors of the economy to become more energy efficience and sustainable.

H

o To identify and publicize problems solved and opportunities offered by microelectronics
Energy Efficiency Scaling over 2 Decades (EES2).

o To publicize and identify sources to fund version 1.0 (2022-2023) of the EES2 RD&D
roadmap.

o To participate in version 2.0 (2024—-2025) of the AMMTO-led EES2 RD&D roadmap.

e To explore formation of a partnership, perhaps “EES2 Allies,” that enable the EES2
1,000 times efficiency goal by leading EES2 RD&D roadmapping after 2025 and by
catalyzing the deployment of cost-effective technologies, including power electroncs,
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needed to stay on the EES2 path of doubling microelectronics’ energy efficiency every 2
years.

We do this because:

o Microelectronics’ life cycle energy use is rapidly becoming unsustainable as
microelectronics demand begins to outpace continuing efficiency improvements due to
burgeoning computing, communication, and electrification demands.

o EES2 s a key organizing principle that aims to help meet new energy demands.

o The EES?2 is a technology leadership path that provides economic and other public
benefits.

To achieve the EES2 goal, this version 1.0 roadmap identifies numerous candidate technologies
to beat that were identified by working groups comprising paired elements of the compute stack.

It's important to note that the EES2 version 1.0 WG volunteers may not have had (or have been
able to share) all the technology insights developed by their respective organizations, and that
not every single member of the semiconductor innovation ecosystem was represented in our
working groups. Nevertheless, the “technologies to beat” are meant to represent an aggressive
challenge to the entire computing innovation ecosystem—especially amongst its highly
competitive industry members—to foster rapid change and a refocus on efficiency; to boldly
outdo each other, and even themselves, in technological innovation.

1.1.6 Analysis Metrics: Energy per Bit, Instruction, and Application

In the EES2 analysis of the headroom for efficiency innovation (see Figure 2) we used three
metrics: energy per bit, energy per instruction, and energy per application to identify
opportunities, we also used them whenever possible in benchmarking technology candidates.
The first metric, energy to flip a bit, is the lowest energy and has historically been the driver of
pre-2005 microelectronics efficiency gains.
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Figure 2. Analysis of the opportunity space for energy efficiency (from bits to bitcoin) according to the bits,
instructions and application metrics. Source: Shankar 2022

Figure 4 and the analysis that accompanied it show that instructions are the new “low-hanging
fruit” of potential microelectronics efficiency gains.

Instructions

This category of innovation potential focuses on reducing the 1,000,000-times difference
between the highest and lowest energy per instruction—and then using in algorithms and
software the lowest energy operation possible. For example, the energy hungry inference part of
an Al calculation can often use far less precise instruction types. The “efficiency first” strategy is
to ensure each instruction maximizes its contribution to overall system performance while
minimizing energy consumption. A very high leverage approach identified by the WGs would be
to provide electronic design automation (EDA) firms the tools (e.g., SLAC’s CompdJoule tool) to
optimize for efficiency first. Given the path-dependence of some designs, such a tool could
rapidly accelerate the deployment of more energy efficient EDA into the innovation ecosystem.

Bits
These are the fundamental units of data within electronic systems. The focus is on new
materials and devices that increase efficiency of how bits are manipulated and transferred

through transistors. Co-design enables the development of transistors that are precisely tuned
to software requirements, reducing unnecessary energy expenditure. It also facilitates the
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creation of data pathways that are optimized for specific data processing tasks, reducing latency
and energy per bit. Additionally, co-design supports the integration of cutting-edge transistor
technologies like fin field-effect transistors (FInFETs) and gate-all-around transistors, which offer
superior control over electricity flow and significantly minimize leakage currents at smaller
scales.

Applications

System energy use is captured by the energy per application metric to perform a particular task.
Software-driven co-design of complex applications such as those involving Al or eventually
guantum computing is the major opportunity. Note that NLP—now known as large language
models—exceed the next closest application by more than 1,000,000 times.

1.2 Scope of the Problem
1.2.1 Scaling Problems and Innovations to Overcome Them

As illustrated by historical . ; . T
. . : Ak gy

data in Figure 3 (Rupp 107 - : g # %t Transistors
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Power per die (red dots at 100 watts) seems to have plateaued even earlier in the late 1990s.
The fast innovating semiconductor community responded to these varied trends with new
innovations such as architectures involving exponentially increasing numbers of logical cores
(black dotted trend of Figure 3). Multiple cores and other innovations allowed CPU performance
to continue improve at an exponential pace because Moore’s Law still holds (orange dots).

Year
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These developments have effectively ended
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The Memory Wall Problem

Figure 4. The gap between processor performance

and DRAM latency. Latency is the time between The scaling problems began to cause
processor memory requests and data return. Source: divergence in the progress curves of memory
Hennessey and Patterson 2019 versus logic. While processor logic speed

increased rapidly pre-2005, progress in

memory speed (bandwidth and especially
latency) lagged, as illustrated in Figure 4. (Hennessey and Patterson 2019). Since 2005,
multicore processors have given rise to new complexity in coordinating the data movements of
simultaneously executing threads across multiple cores while maintaining memory coherency.
This divergence has given rise to the "memory wall" problem, where the speed of data transfer
between memory and logic components has become a significant bottleneck, limiting overall
system performance. As a result, these disparities in scaling relationships are not only
presenting new challenges and driving innovative approaches in the design and operation of
microelectronic devices, but they are also exacerbating the problem of energy efficiency in the
semiconductor industry.

1.2.2 The S-Curve

The “memory wall” and other limitations within the current scaling paradigms make clear that the
next wave of microelectronic innovations will demand interdisciplinary expertise. The rapid
advancements that have defined the semiconductor industry are reaching an inflection point,
reminiscent of the stages described by the S-curve model in technology adoption (see Figure 5).
This model not only reflects the developmental stages of technology, but also signals the
evolving demands on the workforce that support it. Initially, industry emphasis is on innovation
and high energy consumption, but as technologies progress along the S-curve, the industry
must recalibrate to focus on performance
optimization, efficiency, and sustainable
practices. This transition carries significant
implications for workforce development,
calling for a comprehensive revamp of
traditional educational programs to face the
upcoming challenges and opportunities in the
industry.

steady state

maturation

adoption

rapid growth

early adoption

inception

"
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semiconductor design and manufacture for Figure 5. S-curve model
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EES2 technologies will be on the rapid growth part of S-curve. Educators must work closely with
innovators to rapidly reshape, update, and make full-stack codesign a key part of in shaping a
curriculum that also integrates multiple disciples—for example, the principles of power
efficiency, heat management, and parallel processing architectures, thereby enabling students
to become highly innovative workers and innovators in the semiconductor manufacturing and
design industries.

1.2.3 Major Sources of Computing Energy Use

Various hardware advancements and their associated energy demands have significantly
contributed to the overall energy use in computing. As advanced machine learning Al
technologies become increasingly complex, they require not just extensive computational
resources but also more specialized hardware. These components, while designed for efficiency
in certain tasks, still contribute to the overall energy footprint due to their need for high power to
perform trillions of operations per second.

Cryptocurrency mining exemplifies this trend, where the specialized application-specific
integrated circuit (ASICs) consume vast amounts of electricity to sustain continuous, intensive
computation. These devices, with billions of transistors packed into a single chip, are pushing
the limits of energy efficiency in semiconductor technologies.

The hardware underpinning cloud computing infrastructure also plays a significant role in energy
usage. Data centers, now equipped with servers featuring high-density chips and advanced 3D
heterogeneous integration to manage the massive data processing requirements, have seen an
escalation in energy consumption. Innovations such as System on a Chip (SoC) and advanced
memory technologies have mitigated some of this increase, but the sheer volume of processing
offsets these improvements.

Moreover, the proliferation of Internet of Things (loT) devices and the rollout of 5G networks add
to energy use. While each individual sensor, actuator, or communication module in loT solutions
might consume little energy, the aggregate energy required to support billions of these devices
globally is substantial. Additionally, the infrastructure supporting 5G networks, despite being
more energy-efficient on a per-bit basis, is expected to increase overall energy consumption
due to the sheer increase in data rates and network density.

1.2.4 Estimation of Inefficiencies

A wide-ranging study of energy efficiency in computing and losses compared to fundamental
limits has been conducted by Shankar (Shankar and Reuther 2022; Shankar 2023). He
surveyed the energy intensity per instruction for the top 500 supercomputers for some widely
reported benchmarks as well as for some of the largest-scale applications, including
cryptocurrency mining and natural language processing machine learning applications. Shankar
then compared those application-level energy measurements to the energy used by lower-level
individual machine instructions, biological systems (brains), and the fundamental
thermodynamic limit. As shown in Figure 6, energy use varies massively.
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Figure 6. Scale of energy use from bits to applications. Source: Jouppi et al. 2021 for INT8, FP64, SRAM and
DRAM access; Shankar 2023 for the remaining values

The high energy cost of memory access has been shown by measurements by Horowitz (Han
et al. 2016) for a 45-nm process and later updated with a comparison to a 7-nm process (Jouppi
et al. 2021) with results as shown in Figure 7.

Figure 7(a) compares the energy cost of the 45-nm and 7-nm processes and shows that for
every processor instruction, the energy is reduced for the smaller geometry process. The cost of
external DRAM access, however, remains the same. When compared to the energy cost of on-
chip instructions in Figure 7(b), the off-chip DRAM access is 185,000 times more energy than
the least costly INT8 ADD instruction and about 1,000 times more costly than the most complex
compute instructions. Note that in Figure 7(b), the energy cost of operations for each process
node is normalized with the energy of an Int8 operation (0.03 pJ for the 45nm node and 0.007
pd for the 7nm node).
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Energy per operation (pJ) 45 mm/7 nm

Operation 45nm 7 nm Ratio
Int8 ADD 0.03 0.007 43
Int32 ADD 01 0.03 33 Int32 ADD
BFloat16 ADD — 0.11 - BFloatit ADD
|EEE FP16 ADD 04 0.16 25 IEEE FP16 ADD
|EEE FP32 ADD 09 0.38 24 IEEE FP32 ADD
Int8 MULT 02 0.07 2.9 euLT
Int32 MULT a1 148 21 B
BFloat16 MULT — 0.21 —
|EEE FP16 MULT 11 0.34 3.2
|EEE FP32 MULT 37 1.31 2.8
8 kB SRAM acess 10 75 1.3
32 kB SRAM acess 20 85 24
1 MB SRAM acess 100 14 7.1 B
DDR3/4 DRAM access 1300 1300 1 J
HBM2 DRAM access - 250-450 - - 100 000 10000 1000001000000
GDDR6 DRAM access — 350-480 —

(a) Energy per operation (pJ) (b) Energy per operation relative to energy for an INT8 ADD

Figure 7. Energy cost for various operations. Source: Jouppi et.al, 2021.

Computation inevitably involves data movement into and out of DRAM and longer-term storage.
Data movement is generally much more energetically expensive than the computations, so
approaches to reduce the energy cost of data movement—as well as to avoid data movement
when possible—are key pathways for energy savings.

At its core, the reason computers use energy is straightforward. Digital circuits are like light
switches, turning on and off to represent the 1-second and zero-second in computer language.
The energy needed to flip these switches depends on a few things: the electrical pressure
(voltage), how much electrical storage capacity there is (capacitance), and how fast the
switches are flipping (frequency). Conductors in circuits have inherent “parasitic” capacitance
simply due to the presence of charge in neighboring conductors, and this capacitance is
proportional to the conductor length. The 8 kilobits (kB), 32 kB, and 100 kB SRAM listed in
Figure 7 correspond to the first, second, and third level on-chip cache memories, organized at
progressively further distances from the core and therefore with progressively higher latency
and energy costs.

This roadmap seeks to comprehensively identify opportunities for reduced energy intensity in all
aspects of microelectronics. The twin issues of the high energy cost of memory access and the
latency of access are recurring underlying motivations for many topics throughout this roadmap,
with numerous approaches for improvement. Fortuitously, solutions to reduce energy consumed
by memory access are also solutions to address the key bottleneck in speed, and thus also
improve overall compute performance.

1.2.5 Efficiency First

Powerful computational tools and decades of manufacturing knowledge now enable approaches
that compare “efficiency first” designs (e.g., using advanced technologies such as those in this
roadmap) to conventional designs and achieve EES2 goals without compromising performance.
During the course of this roadmap, it became clear that efficiency optimization along another
axes (i.e., thermal and mechanical considerations in addition to electronic) was needed to
prevent the performance demands of ever tinier next generation microelectronics from
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contributing to electricity demand problems. While thermal and mechanical dimensions had
previously been considered, including them at the very outset—for example, combining
electronic, thermal, and mechanical modelling—still needs to be done.

1.2.6 Energy Use and Sustainability in Semiconductor Manufacturing

Semiconductor manufacturing has become more energy intensive in recent years due to the
growing demand for advanced, high-performance chips and the complexities inherent in their
production. The manufacturing process, characterized by steps like material deposition,
lithography, etching, and polishing, has become more demanding with the introduction of
advanced processing technology such as extreme ultraviolet lithography (EUV). This
intensification in manufacturing complexity not only escalates energy consumption but also
heightens the sustainability concerns associated with semiconductor production.

Key sustainability issues in semiconductor manufacturing include the use of potent greenhouse
gases like SFg, NF3, and perfluorocarbons in etching processes, and the presence of PFAS
materials in standard processing equipment. Additionally, the high demand for ultrapure water,
exacerbated by a fivefold increase in water usage over the past decade (Crawford, King, and
Wu 2023), poses significant environmental challenges. With many new fabrication facilities
located in water-insecure regions like Arizona and northern Taiwan, the industry’s water usage
is a growing concern.

1.3 Key Concepts for Microelectronic Energy Efficiency

In the EES2 roadmap, co-design emerges as a pivotal R&D strategy essential for catalyzing
significant advancements in energy efficiency within the microelectronics sector. This
comprehensive approach synthesizes hardware and software design processes from the initial
stages, ensuring every component is optimized for minimal energy use while upholding high
performance. This strategic integration results in systems that are efficiently tailored to the
evolving demands of contemporary technology applications.

1.3.1 Co-Design Process

Co-design is not just a design technique, it is foundational to our strategic approach. Here is an
example of a co-design process:

e Requirement Analysis: Stakeholders collaboratively define and align on system
requirements, establishing clear objectives for performance and efficiency.

o Concurrent Design: Teams from two adjacent parts of the stack develop their designs
in parallel, enabling real-time adjustments and optimization based on mutual feedback,
which ensures that both aspects evolve together seamlessly.

e Prototyping and Testing: Early and iterative testing of integrated prototypes allows for
quick identification and correction of inefficiencies, ensuring that the final product
functions as intended in real-world conditions.

e Optimization and Refinement: Continuous refinement based on testing feedback
allows for the enhancement of system efficiency and functionality, ensuring that the
designs meet the standards set by the roadmap.

This structured approach to co-design directly supports a roadmap’s goals by promoting rapid
innovation and implementation of energy-efficient technologies, also ensuring that
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developments are not only technically feasible but also commercially viable and ready to meet
the challenges posed by an energy-intensive technological landscape.

1.4 Organization of the Work

The “compute stack” describes the hierarchy of layers responsible for
the development of computational systems, as shown in Figure 8. In
order to achieve the benefits of co-design envisioned by DOE in its
seminal Basic Research Needs for Microelectronics (DOE Office of
Science, 2018) report, co-design for energy efficiency must ensure
that adjacent elements of the stack work together. AMMTO’s DOE
partners in the Office of Science defined “co-design” in this 2018
report as “where each of the technical abstraction layers in modern
computer system design (the compute stack), from fundamental
materials research through applications, inform and engage other
abstraction layers.” Furthermore, “co-design activities largely occur
between adjacent technology abstraction layers (e.g., between
materials and devices or computer architects and software
designers).” Interdisciplinary co-design is an efficiency imperative. DEYA%EJ#;D
This report reinforces and extends the SC recommendations by

providing an order in which co-design needs to be implemented (e.g.
efficiency first and for energy intensive applications, major waste heat
reduction first). For instance, the development of IBM's NorthPole

chip required a holistic approach, integrating breakthroughs across M%TEEI\',IAIE%QYND
circuits, architecture, and algorithms (Modha et al. 2023). This
approach creates electronics that are not only cutting-edge but also

| ARCHITECTURE

INTEGRATION

PHYSICS

sustainable in their energy usage. Figure 8. The compute stack.
. .. . . . Source: DOE Office of Science
The EES2 program has effectively divided its scope into eight 2018

specialized working groups to enable a comprehensive and

collaborative approach to achieve its goal. For a detailed exploration

of the microelectronic domain, the initiative has been further partitioned into two categories as
depicted in Figure 8, namely: Compute Stack and Microelectronic Enablers. Each working group
within the “stack” addresses a layer of the computing stack, with a central focus on energy
efficiency. Concurrently, the Enabler category concentrates on enabling technologies,
approaches, and workforce, paying specific attention to their manufacturing processes and the
energy consumption involved in their computation and operation, including aspects like data
center function and energy transport among others.
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Figure 9. 2022—-2023 organization of the EES2 working groups.
The general scope of each WG is described in the following section.

1.4.1 Compute Stack

The Materials and Devices group focuses on contemporary challenges in device technology,
evaluating innovative materials like carbon nanotubes, and pioneering devices such as
spintronic memory. They also address existing issues encompassing current materials,
including scalability, contact resistance, and thermal attributes. Given that materials and devices
are fundamental to all semiconductor products, key areas of examination include interfaces,
interconnects, CMOS compatibility, and novel devices, particularly those leveraging unique
switching mechanisms. As Moore's Law decelerates, the discovery of new materials, switching
mechanisms, and devices is crucial to meet the efficiency targets of EES2.

The Circuits and Architectures group seeks energy efficiency gains in the fundamental
building block circuits (transistors, memory cells, etc.) as well as in their organization into an
architecture (processors, domain-specific accelerators, high bandwidth memory, etc.). Energy
efficiency improvements have primarily come through geometric scaling of the transistor and
memory cell. However, since scaling is slowing, this group is focusing on systemic issues, and
energy-efficient parallel technologies of processors and memory as well as compute-in-memory
technologies for enhancing energy efficiency and performance.

The Advanced Packaging and Heterogeneous Integration group emphasizes energy-
efficient strategies in integrated circuits and packaging. This is achieved through heterogeneous
integration, optical interconnects, and thermal mitigation, utilizing cutting-edge materials and
novel packaging techniques. Given that data movement is an energy-intensive operation, this
focus provides tangible energy efficiency solutions for semiconductor products. Key areas of
consideration include industry standards, optimized thermal management, chiplet-based
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integration, reduction of critical dimensions to silicon fabrication sizes, and innovation in
interconnects and input/output systems.

The Algorithms and Software group focuses on optimizing energy efficiency of
microelectronics through strategic utilization of algorithmic design and software development.
Examples include bio-inspired/neuromorphic algorithms and algorithmic improvements coupled
to accelerator hardware. The group’s aim is to champion the energy efficiency goal within
software without compromising computational operations.

1.4.2 Microelectronic Enablers

The Power and Control Electronics group focuses on enhancement and innovation of power
delivery systems spanning from microelectronics to large data centers. Their concentration lies
in exploring economically viable and efficient design solutions, which range from the
implementation of wide-bandgap devices in switching power supplies to formulating strategies
for optimizing renewable energy use and reducing carbon in energy supplies to data centers to
improved thermal management strategies for lower overall energy consumption of the data
center(s). Understanding that efficient power delivery and control are critical for information-
communication technologies, the group acknowledges that managing where, when, and how
power is delivered to devices can minimize energy consumption and is integral to handling
large-scale renewable resources and electric transport. Key areas of interest include power
management, thermal mitigation technologies, pioneering devices, power leakage, and power
conditioning circuits and components.

The Manufacturing Energy Efficiency and Sustainability group focuses on optimization of
energy efficiency and promotion of sustainability in the manufacturing process, especially in
response to the rising wave of manufacturing facilities spurred by the CHIPS and Science Act.
The Act's core objective is to repatriate manufacturing of microelectronics. As discussed above,
manufacturing-related energy usage escalates with each new iteration of advanced
semiconductor technology. In response to this, key areas of interest include alternatives for
energy-intensive extreme ultraviolet lithography, lower greenhouse gas-emitting dry etch gases,
and the implementation of sustainable manufacturing practices.

The Metrology and Benchmarking group identifies measurement, characterization, and
benchmarking needs for the technologies discussed in other working groups. Recognizing the
intricacy of burgeoning integrated circuits and microelectronic systems, this focus is essential for
the identification of pioneering metrology technologies and strategies for future systems. As
semiconductor products increase in complexity, the importance of metrology in understanding
process variability, device function, and troubleshooting amplifies. Benchmarking becomes
crucial in defining appropriate metrics for energy efficiency and in comparing extant and
emerging technologies. Areas of interest include innovative metrology methods and tools,
suitable metrics for each level of the microelectronic stack, and standards stipulated by NIST,
inclusive of those provided for energy efficiency by DOE.

The Education and Workforce Development group develops strategies to ensure a well-
qualified workforce is available not only to support the growth of the domestic microelectronics
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industry, but also to lead global innovation in microelectronics technology, especially as it
pertains to energy efficiency in microelectronics and computational systems.

1.4.3 Cross-Collaboration

Although the work was organized by the groups listed above, many of the ideas documented in
the roadmap are inherently interdependent and require input from multiple working groups. For
example, the most impactful implementation of carbon nanotube field-effect transistors
(CNTFETS) is in monolithic 3D integration with emerging memory elements and circuit
architecture. This requires direct innovations from the Materials and Devices, Circuits and
Architectures, Advanced Packaging and Heterogeneous Integration, Metrology and
Benchmarking, Manufacturing, and Algorithms and Software working groups. In this way,
demonstration and implementation of the ideas from each working group may require
innovations from multiple working groups simultaneously. To address this interdependency,
team members had opportunities throughout the roadmap development process to discuss
cross-cutting opportunities, seek input from other working groups, and coordinate results in
each technologies action plan.

1.5 Methodology

This roadmap is a product of extensive literature review and energy analysis, nine working
group collaboration meetings, and expert input during the writing process. The working groups
met monthly, with the organizing committee engaging in literature review and analysis to
prepare for the following meeting. Table 2 and the description below provide a general overview
of the roadmapping process. Some working groups may have differed through the series of
meetings based on progress and the nature of the topics within each group.

The roadmap formally launched in September 2022 with a pair of meetings—the first to
introduce the EES2 pledge and inaugurate its first 20 signers, and the second to discuss energy
efficiency considerations of microelectronic devices and identify key technological
advancements needed to achieve the EES2 goal. The input gathered during these events along
with post-meeting literature review established the working group topics, which were formalized
in a meeting held in November 2022. Those that participated in the meeting identified the
working groups to which they were interested in contributing.

Starting in January 2023, each working group met monthly to explore various aspects related to
the working group topic. January 2023 featured the announcement of a detailed roadmap
schedule and strategy, and participant discussions served to determine the general scope of
each working group. Working group members were nominated by the pledging organizations
and self-selected the working groups supported according to expertise and interest. Some more
active members were invited by DOE or volunteered to act as co-chairs of the working groups.

In February 2023, the third meeting built upon the previous by centering around specific energy
efficiency technologies. In many cases, the working group proposed more technologies than the
working group could effectively discuss and characterize throughout the rest of the working
group meetings, so the group prioritized what they thought were the most promising
technologies. The number of technologies that were deprioritized depended on the size of the
working group. Working group members were also asked to estimate projected energy
efficiency contribution and timeline for achievement of that contribution. These estimates were
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only meant to gauge an approximate number on the potential efficiency improvement and in
most cases, highlighted the need for deeper analysis.

The fourth meeting functioned as an intensive session for the working group to continue the
discussions from the previous month. Working group members broke up into small groups to
research and analyze existing literature and data to refine initial energy efficiency estimates for
the down-selected technologies. The need for an additional working group focused on workforce
development was also discussed.

The fifth meeting, held in April 2023, was dedicated to identifying challenges that may arise in
the development and implementation of the proposed technologies solutions. A secondary
purpose of the fifth meeting was the official establishment of the newly founded workforce
development working group.

In May 2023, the sixth meeting focused on a discussion of R&D solution pathways for the
challenges that were identified in the previous meeting, and the seventh meeting in June
reviewed and discussed the input collected from the previous meetings and made any
adjustments necessary. If time allowed, working groups also started on action plans.

Held in July 2023, the eighth meeting was dedicated to developing an action plan for each
technology or to address key challenges. Working group members, once again, broke up into
small groups to flesh these out. Groups continued to collaborate offline after the eighth meeting
to continue to make progress prior to the ninth and final meeting, which was held in August. This
meeting, the small groups finished up their action plans and presented them for feedback from
the broader group.

Writing of the roadmap began in September 2023, with working group facilitators drafting
sections pertaining to their respective groups. Drafts were distributed to working group chairs
and participants for comment, and support staff were tasked with drafting introductory and
overview sections of the roadmap.

Table 2. Workshop Series Used to Establish the Targeted Technologies and Associated Solution Pathways
and Action Plans for thie Roadmap

WG Meeting Timing Topic(s) of Discussion
November 2022 | Working group topics and membership
2 January 2023 Working group charters and processes
3 February 2023 Z;at)i/ rrt]aar:t(;rsgy-efficient technologies, prioritization, and efficiency
4 March 2023 State of the art, baseline energy consumption, and future projections
5 April 2023 Efficiency improvement challenges
6 May 2023 Pathways for advancement
7 June 2023 Review and refinement
8 July 2023 Action planning
9 August 2023 Action planning, review, and refinement
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The technologies in this roadmap are assessed against two metrics, timeline to maturity and
impact. Timeline to maturity corresponds to the time required to achieve a technology readiness
level (TRL) of 6. Tailored definitions of TRLs for the microelectronics industry are detailed in
Figure 10. Technologies already at TRL 6 are included for their potential energy efficiency
improvements, despite not being incumbent technologies. Impact is measured by comparing
future performance in an energy metric against current technology (e.g., energy per bit, energy
per switching, memory access, etc.). While true impact from the technologies contained in the
roadmap will be dependent on commercialization and deployment, non-technical and market
forces play an outsize role in determining this timeline. Therefore, the roadmap does not attempt
to estimate when this will occur, nor which technologies should be addressed next. Instead, the
roadmap compiles promising energy-efficient technologies and approaches and highlights the
technical challenges and potential solution pathways to achieve technical readiness for
commercialization, if so desired by industry.

Generic TRL Guidelines Microelectronics-Specific TRL Guidelines
Unproven concept, no testing hos been performed Unproven concept, no testing has been performed
You can now describe the need(s) but have no evidence Studied theoretically or experimentally with general ideas for use

TECHNOLOGY FORMULATION

Concept and application hove been formulated

NEEDS

You have an initial ‘offering, stakeholders Clke your slideware
SMALL SCALE PROTOTYPE

Built in a laboratory environment

LARGE SCALE PROTOTYPE

Tested in intended environment

PROTOTYPE SYSTEM

Tested in intended environment close to expected performance
DEMONSTRATION SYSTEM

Operating in operational environment at precommercial scole
FIRST OF AKIND COMMERCIAL SYSTEM

All technical processes to support commercial activity in place
FULL COMMERCIAL APPLICATION

Technology "general availability' for all customers

TECHNOLOGY FORMULATION

Concept/application defined, limited experimental confirmation
PROMISING TECHNOLOGY CANDIDATE

Promising but not yet demonstrated in a functional system
TECHNOLOGY CANDIDATE FOR FUTURE NODES

Demonstrated in research labs but too immature for next nodes
TECHNOLOGY CANDIDATE FOR NEXT NODES

Included in research fab line for the upcoming node

THE NEXT NODE BEYOND CURRENT PRODUCTION PLAN

Meets performance requirements for the next production node
THE UPCOMING STATE OF THE ART PRODUCTION NODE
Vetted in operational environment, ramping towards HVM

THE CURRENT STATE OF THE ART PRODUCTION NODE

The latest node in HVM, supplying customers

PREVIOUS PRODUCTION NODES

The previous node and all preceding nodes, highly vetted

OO0 B®

Figure 10. Definitions for technology readiness levels for the microelectronics industry as used in this report

1.6 Related Work

Roadmapping has a long tradition in the semiconductor industry, with industry-led groups
coordinating on shared efforts to pursue early-stage R&D, standardize equipment, and reduce
capital expenditures while propelling the technology forward in keeping with Moore’s Law. There
are several important roadmapping activities being undertaken today to facilitate technological
progress in the post-Dennard scaling era. The following subsections list and describe the scope
of the most prominent roadmaps.

1.6.1 International Roadmap for Devices and Systems

The International Roadmap for Devices and Systems (IRDS) (IRDS 2022), the most long-
standing roadmap in the industry, evolved from the predecessor International Technology
Roadmap for Semiconductors (ITRS). Even earlier, a 1965 paper by Gordon Moore laid out the
observation known as Moore’s Law (Moore 1965). Moore’s paper established a tempo of
technology advancement for the semiconductor industry, but it was not until 1991 that a formal
roadmap document (the ITRS) was developed by the U.S. semiconductor industry community.
From this beginning, in keeping with the expansion of the industry globally, the roadmap grew
into an international effort. The ITRS was updated annually through 2015 but was then
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supplanted by the IRDS, which had a broader scope that encompassed electronic devices and
systems. The intent of the IRDS roadmap is to provide a basis to facilitate cooperation by
academic, manufacturing, supply, and research organizations, specifically:

¢ To identify key trends related to devices, systems, and all related technologies by
generating a roadmap with a 15-year horizon.

o To determine generic devices' and systems' needs, challenges, potential solutions, and
opportunities for innovation.

e To encourage related activities worldwide through collaborative events, such as related
IEEE conferences and roadmap workshops.

1.6.2 Heterogeneous Integration Roadmap

The Heterogeneous Integration Roadmap (HIR) (HIR 2022) is a collaborative effort between
several |IEEE technical societies—the IEEE Electronics Packaging Society (EPS), the IEEE
Electron Devices Society (EDS), and the IEEE Photonics Society—as well as the industry group
SEMI and the ASME Electronic and Photonic Packaging Division (EPPD). Like the IRDS (from
which it is an outgrowth), the HIR provides guidance for the global electronics industry regarding
projected technology capabilities, needs, and opportunities. The HIR provides:

e A forecast of industry requirements to maintain the pace of progress for the industry and
user community over a 15-to-25-year horizon.

¢ Identification of difficult challenges that must be addressed to meet these industry
requirements, with identified research needs and potential solutions.

1.6.3 2030 Decadal Plan for Semiconductors

Published in January 2021, the 2030 Decadal Plan for Semiconductors by the Semiconductor
Research Corporation (SRC 2021) was instrumental in motivating the work that has resulted in
this EES2 roadmap. The decadal plan outlined key research priorities for the semiconductor and
computer industries. It followed a June 2020 report by the Semiconductor Industry Association
(SIA) calling for a 3-fold increase in federal investment in semiconductor R&D to stimulate U.S.
economic growth and job creation, complementing it with specific goals and quantitative targets
(SIA 2020). The decadal plan identified five seismic shifts that will influence the industry:

¢ Analog hardware will enable machine intelligence systems.

¢ Growing demand for memory will outstrip global supply, creating opportunities for new
memory and storage solutions.

¢ Growing demand for communication capacity to keep up with data generation rates will
drive communication technology development.

o Emerging security challenges in highly interconnected systems and in Al systems will
drive security technology development.

e Ever-rising energy demands for computing will necessitate new computing paradigms
with dramatically improved energy efficiency.
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1.6.4 Microelectronic and Advanced Packaging Technologies Roadmap

The ongoing microelectronic and advanced packaging technologies (MAPT) roadmap (MAPT
2023) effort is led by SRC as an expansion of the 2030 decadal plan. MAPT is a
multidisciplinary strategy addressing advanced packaging, 3D integration, EDA, nanoscale
manufacturing, new materials, and energy-efficient computing, with the aim of assuring future
design, development, and manufacturing of heterogeneously integrated chips in the U.S. and
like-minded nations. The MAPT Roadmap outlines research priorities and challenges that must
be addressed to ensure sustainable growth and innovation, and focuses explicitly on energy
sustainability, environmental sustainability, and workforce sustainability.

1.6.5 National Strategy on Microelectronics Research

The White House Office of Science and Technology Policy (OSTP) and its National Science and
Technology Council (NSTC) created—as required by the first CHIPS authorization in 2021—a
Subcommittee on Microelectronics Leadership (SML) that was tasked with providing a National
Strategy on Microelectronics Research (NSTC 2024). The Office of Science represented DOE
in the strategy development effort. The National Strategy identified the following goals to guide
agency efforts in microelectronics research:

¢ Enable and accelerate research advances for future generations of microelectronics.

e Support, build, and bridge microelectronics Infrastructure from research to
manufacturing.

o Grow and sustain the technical workforce for the microelectronics R&D to manufacturing
ecosystem.

¢ Create a vibrant microelectronics innovation ecosystem to accelerate the transition of
R&D to the U.S. industry.

In the national strategy, improving energy efficiency was mentioned as being “increasingly
essential for sustainability” and as an important research focus in numerous areas. AMMTO’s
Semiconductor R&D for Energy Efficiency workshop series was also referenced in the national
strategy.

1.6.6 How This Complements Prior Roadmaps and Strategies

The EES2 roadmap complements the roadmaps and strategies listed above. Whereas the prior
reports encourage energy efficiency qualitatively, the EES2 roadmap has quantitative goals for
energy efficiency. It also uses a common factor—the energy efficiency improvement factor—to
compare technologies, as well as the three specific energy metrics: energy per bit, instruction,
and application.

With several EES2 pledging institutions and individual WG participants also involved in other
roadmap efforts, cross-pollination is another complementary area. For example, SRC, the first
EES2 pledger, provided early and valuable input to the EES2 roadmap process, and the EES2
team likewise has provided input to the MAPT effort. Most of the WG members are also active
in at least one other collaborative microelectronics innovation ecosystem effort, such as
standards-setting committees, technical societies and councils, and community-organized
conferences, thus bringing a wider perspective and greater industry connectivity to the team.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 20



Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

1.7 Introduction References

Crawford, Alan, lan King, and Debby Wu. 2023. “The Chip Industry has a Problem with Its Giant
Carbon Footprint.” Bloomberg. Published April 8, 2023.
https://www.bloomberg.com/news/articles/2021-04-08/the-chip-industry-has-a-problem-with-its-giant-
carbon-footprint.

Han, Song, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. 2016. “EIE: efficient inference engine on compressed deep neural network.” ACM
SIGARCH Computer Architecture News. Vol. 44 (Issue 3): pg 243—-254.
https://doi.org/10.1145/3007787.3001163.

Hennessey, John, and David Patterson. 2019. Computer Architecture: A Quantitative Approach.
Burlington, MA: Morgan Kaufmann Publishers.

HIR. 2022. Heterogeneous Integration Roadmap 2021 Edition. Institute of Electrical and
Electronics Engineers (IEEE). htips:/eps.ieee.org/technology/heterogeneous-integration-

roadmap.html.
IRDS. 2022. International Roadmap for Devices and Systems. IEEE. https://irds.ieee.org/.

Jouppi, Norman P., et al. 2021. “Ten Lessons from Three Generations Shaped Google’s
TPUv4i: Industrial Product.” Presented at ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). Valencia, Spain. https://doi.org/10.1109/ISCA52012.2021.00010.

Kamiya, George, and Oskar Kvarnstrém. 2019. “Data centres and energy — from global
headlines to local headaches?” International Energy Agency (IEA). Published December 20,
2019. https://www.iea.org/commentaries/data-centres-and-energy-from-global-headlines-to-local-
headaches.

Kurzweil, Ray. 2005. The Singularity Is Near: When Humans Transcend Biology. New York:
Penguin Books.

Mann, Margaret, and Vicky Putsche. 2022. “Semiconductor: Supply Chain Deep Dive
Assessment.” U.S. Department of Energy Response to Executive Order 14017, “America’s
Supply Chains.” Published February 24, 2022. https://doi.org/10.2172/1871585.

MAPT. 2023. Microelectronics and Advanced Packaging Technologies (MAPT) Roadmap.
https://srcmapt.org/.

Masanet, E., A. Shehabi, N. Lei, S. Smith, and J. Koomey. 2020. “Recalibrating global data
center energy-use estimates.” Science. Vol. 367 (Issue 6481): pg 984-986.
https://doi.org/10.1126/science.aba3758.

McKie, Robin, and James Tapper. 2022. “Chaos after heat crashes computers at leading
London hospitals.” The Guardian. Published August 7, 2022.
https://www.theguardian.com/environment/2022/aug/07/chaos-after-heat-crashes-computers-at-leading-
london-hospitals.

Modha, Dharmendra S., et al. 2023. “Neural inference at the frontier of energy, space, and
time.” Science. Vol. 382 (Issue 6668): pg 329-335. https://doi.org/10.1126/science.adh1174.

Moore, Gordon. 1965. “Cramming more components onto integrated circuits.” Electronics. Vol.
38 (Number 8). Published April 19, 1965.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 21


https://www.bloomberg.com/news/articles/2021-04-08/the-chip-industry-has-a-problem-with-its-giant-carbon-footprint
https://www.bloomberg.com/news/articles/2021-04-08/the-chip-industry-has-a-problem-with-its-giant-carbon-footprint
https://doi.org/10.1145/3007787.3001163
https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html
https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html
https://irds.ieee.org/
https://doi.org/10.1109/ISCA52012.2021.00010
https://www.iea.org/commentaries/data-centres-and-energy-from-global-headlines-to-local-headaches
https://www.iea.org/commentaries/data-centres-and-energy-from-global-headlines-to-local-headaches
https://doi.org/10.2172/1871585
https://srcmapt.org/
https://doi.org/10.1126/science.aba3758
https://www.theguardian.com/environment/2022/aug/07/chaos-after-heat-crashes-computers-at-leading-london-hospitals
https://www.theguardian.com/environment/2022/aug/07/chaos-after-heat-crashes-computers-at-leading-london-hospitals
https://doi.org/10.1126/science.adh1174

Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

National Science and Technology Council. 2024. “National Strategy on Microelectronics
Research.” Executive Office of the President of the United States. Published March 2024.
https://www.whitehouse.gov/wp-content/uploads/2024/03/National-Strategy-on-Microelectronics-
Research-March-2024.pdf.

Rupp, Karl. 2022. “Microprocessor Trend Data.” https://github.com/karlrupp/microprocessor-trend-
data.

Shankar, Sadasivan, and Albert Reuther. 2022. “Trends in Energy Estimates for Computing in
Al/Machine Learning Accelerators, Supercomputers, and Compute-Intensive Applications.”
Presented at 2022 |IEEE High Performance Extreme Computing Conference (HPEC). Waltham,
MA. https://doi.org/10.1109/HPEC55821.2022.9926296.

Shankar, Sadasivan. 2023. “Energy Estimates Across Layers of Computing: From Devices to
Large-Scale Applications in Machine Learning for Natural Language Processing, Scientific
Computing, and Cryptocurrency Mining.” Presented at 2023 IEEE High Performance Extreme
Computing Conference (HPEC). http://dx.doi.org/10.1109/HPEC58863.2023.10363573.

SIA. 2020. “State of the U.S. Semiconductor Industry.” Semiconductor Industry Association
(SIA). https://www.semiconductors.org/wp-content/uploads/2020/07/2020-SIA-State-of-the-Industry-
Report-FINAL-1.pdf.

SRC. 2021. 2030 Decadal Plan for Semiconductors. Semiconductor Research Corporation
(SRC). https://www.src.org/about/decadal-plan/.

Statista. "Primary Energy Consumption Worldwide from 2000 to 2023 (in exajoules)." Accessed
July 24, 2024. https://www.statista.com/statistics/265598/consumption-of-primary-energy-worldwide/.

The White House. 2022. “FACT SHEET: CHIPS and Science Act Will Lower Costs, Create
Jobs, Strengthen Supply Chains, and Counter China.” Published on August 9, 2022.
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-
act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-chinal/.

York, Richard, and Julius Alexander McGee. 2016. “Understanding the Jevons Paradox.”
Environmental Sociology. Vol. 2 (Issue 1): pg 77-87.
https://doi.org/10.1080/23251042.2015.1106060.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 22


https://www.whitehouse.gov/wp-content/uploads/2024/03/National-Strategy-on-Microelectronics-Research-March-2024.pdf
https://www.whitehouse.gov/wp-content/uploads/2024/03/National-Strategy-on-Microelectronics-Research-March-2024.pdf
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data
https://doi.org/10.1109/HPEC55821.2022.9926296
http://dx.doi.org/10.1109/HPEC58863.2023.10363573
https://www.semiconductors.org/wp-content/uploads/2020/07/2020-SIA-State-of-the-Industry-Report-FINAL-1.pdf
https://www.semiconductors.org/wp-content/uploads/2020/07/2020-SIA-State-of-the-Industry-Report-FINAL-1.pdf
https://www.src.org/about/decadal-plan/
https://www.statista.com/statistics/265598/consumption-of-primary-energy-worldwide/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
https://doi.org/10.1080/23251042.2015.1106060

SECTION

Technologies for the Compute Stack




Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

2 Technologies for the Compute Stack

This chapter discusses the hierarchical layers of the microelectronics compute stack and
highlights the energy efficiency potential for the technologies within each. The sub-sections are
a summary of the input gathered from working group deliberations over the roadmapping period.
Each sub section is first framed within the context of microelectronics and makes connections to
the broader EES2 goal. This sets the stage for an in-depth analysis of each technological area.

Key technological domains are identified, with their functionality thoroughly explored alongside
potential improvement strategies. Precise metrics and projected timelines are provided for each
technology's path towards maturity and deployment with emphasis on the future initiatives
needed to achieve these outlined objectives.

2.1 Materials and Devices

In 2024, the metal-oxide-semiconductor field-effect transistor (MOSFET) is the foundation for
logic and memory devices, serving as the backbone of traditional computing technologies. The
complementary metal-oxide-semiconductor (CMOS) process, which pairs complementary and
symmetrical MOSFETSs, has been the standard implementation of MOSFETSs for decades. As
CMOS technologies progressed below 10-nm, short channel effects, which result in high
standby power consumption and low drive current, became the dominant factor impeding
continued scaling (Lee et al. 2015). These short channel effects led to intense interest in
alternative device technologies in parallel with CMOS scaling. Examples of alternative device
technologies include novel channel materials, device architectures, and switching mechanisms.

To overcome the limitations of Si Charge-based Other than charges
CMOS scaling, there are generally CMOS-based

two approaches: CMOS-extension — <

and Beyond-CMOS (or CMOS- Stansi 010 "G00 anowe
replacement) technologies (Hiramoto f.';;ﬁi'/meta._e Nanow-re v Quantu
2009 see Figure 11)_ CMOS- Variations Bottom- up devices

DFM High yield IIIV /
extension technologies utilize

A

A

thermionic emission to switch charge 2005 2020? 2035?
states using either innovative Year

materials or device architectures. In 1. CMOS Extension

contrast, Beyond-CMOS strategies (More More) 3. Beyond CMOS

employ unconventional transport 2. New Functions Added to CMOS
mechanisms, such as tunneling, or (More Than More)

rely on effective carriers distinct from Fi . . . .

. igure 11. Technology options for new information processing
charge, such as spin. technologies. Source: Hiramoto 2009
Innovative materials technologies—
such as 2D materials, carbon
nanotubes, spintronics, and ferroelectrics—primarily impact the bit level. These materials serve
as the foundation for developing advanced transistors, including traditional FETs, TFETs, and
Si-GAA transistors, which are crucial for enhancing energy efficiency and performance at the bit
level. By fundamentally improving the properties of transistors, these materials play a pivotal
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role in the efficient manipulation and storage of bits, laying the groundwork for more energy-

efficient and high-performance computing architectures.

Working group methodology

The working group focused on addressing the
contemporary challenges in device technology (Si
scaling) and evaluating innovative materials and emerging
devices (see Table 3). Challenges associated with these
alternatives—including scalability, contact resistance,
interfaces, and CMOS compatibility—were also
addressed.

Figure 12 summarizes the potential energy efficiency
improvement factor and timeline for demonstration of the
prioritized technologies. The y-axis represents the
potential energy efficiency improvement factor, which is
quantified based on the energy savings achieved when
transitioning from the incumbent technology to the
alternative in logarithmic scale. The x-axis, on the other
hand, denotes the years it takes for this specific
technology to reach TRL 6. For more information on
TRLS, refer to section 1.5. The references for each
technology are included in the detailed write-ups that can
be found in the following sections.

A systematic benchmarking effort is needed to objectively

Table 3. Promising Energy-Efficient
Materials and Device Technologies.

Technology

2D materials

CNTFET

CNT memory

Spintronic/magnetoelectric logic

Spintronic memory

Ferroelectric memory

Tunnel field effect transistor

Silicon gate-all-around

Analog devices for neuromorphic

Novel interconnects and contacts

Novel interlayer dielectrics

compare the technologies proposed in this chapter. Furthermore, as the lowest rung on the
compute stack, system-level efficiency impacts from innovations stemming from this working

group must be carefully evaluated.
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®
100

TFET
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Figure 12. Potential efficiency improvement factor and timeline for selected technologies proposed by the
Materials and Devices working group

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 25




Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

Key Takeaways
Table 4 summarizes the most significant identified energy efficiency opportunities that can be
achieved through advances in materials and devices.

Table 4. Key Takeaways for Energy Efficiency Opportunities in Materials and Devices

o Si-GAA transistors offer energy efficiency gains along with other
performance improvements, including faster switching speeds and
reduced channel leakage. It is currently on the path to being fully
realized and integrated into systems, replacing FinFETs, by 2025.

CMOS-Extension

e 2D Materials, such as TMDCs, are atom-thick layers with unique

R o o properties like high electron mobility and thermal conductivity. 2DFETs
g Y ~*Y° i can offer energy efficiency improvement over traditional silicon-based
& G FETs by reducing total capacitance and operating voltage, as well as

reducing device density due to their thin-layered structure.

o CNTs have unique material properties such as high electron mobility

. and ultrathin 1D structure. CNT-based devices, especially CNT memory,
Conventional also exhibit outstanding current density and minimal parasitic effects.
Carrier and 2 Their high carrier mobility and near-ballistic carrier transport allow
Transport CNTFETSs to mitigate short channel effects present in silicon MOSFETSs,
significantly enhancing computational energy efficiency.

Beyond-CMOS:

e Ferroelectric FET (FEFET) enable non-volatile memory with lower write
energy. Hafnia-based FeFETs stand out for their nondestructive read,
fast switching, scalability, and potential for multibit operation, offering
significant advantages over traditional memory technologies.

e Spintronic devices utilize the electron's charge and spin to enable low
power consumption and high endurance electronic circuits with the
added advantage of non-volatility, offering competitive performance for
both logic and memory applications.

Alternative Carriers enabling steeper subthreshold slopes and lower operating voltages.

and Transport ¢ Emerging devices and materials for analog computing, such as

memristors, have the potential to transform computational methods.
These devices leverage a variety of materials, including organic
materials that mimic neuroplasticity and mixed ion-electron conductors
that facilitate brain-like processing.

|
Beyond-CMOS: :\: e Tunnel FETs (TFET) leverage quantum tunneling for carrier transport,
oko

e Integration of novel materials for interconnect and ILD can reduce
resistive loss and capacitive delay, leading to improvements in energy
efficiency, performance enhancement, and higher device density.

e |LDs with lower k-values are essential to minimize crosstalk and delay
time. Innovative materials with structural, thermal, and chemical
Device Integration integrity, along with mechanical hardness and minimal leakage, are
Materials needed.

e There is a concerted push towards interconnect and contact metals,
such as ruthenium, which have lower mean free paths and are less
affected by boundary scattering. Research is also looking into
barrierless alternatives and novel contact materials to overcome metal-
induced gap states and reduce contact resistivity.
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Grand challenges

The major challenges for achieving energy efficiency gains in microelectronics materials and
devices include:

e Achieving consistent manufacture of high-purity and high-quality materials—such as 2D
materials, carbon nanotubes (CNTs), and magnetic materials—for energy-efficient
microelectronic devices.

¢ Identifying and developing processing methods to enable integration of new materials.

e Benchmarking emerging devices and material technologies against a consistent set of
metrics and test protocols.

e Establishing R&D testbeds or prototyping facilities to demonstrate emerging device
concepts and materials.

o Evaluating fundamental and interfacial properties (thermal stability, conductivity, contact
resistance, etc.) of emerging materials and heterostructures and understanding their
implications on device behavior.

e Bridging the knowledge gap between material science and device engineering through
cross-disciplinary collaboration among material scientists, device engineers, and
system architects to foster holistic understanding and create highly efficient, scalable,
and reliable devices.

e Developing and leveraging high-fidelity device modeling and system simulation
platforms that consider nuanced behavior of materials to accelerate R&D.
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2.1.1 2D Semiconductor Materials

Two-dimensional (2D) semiconductor materials generally consist of one-to-three atom-thick
layers, forming covalently bonded lattice structures. Many 3D semiconductor materials include
surfaces with dangling bonds, which are unbonded atoms at the surface that can create reactive
sites. In contrast, 2D semiconductor materials generally have saturated bonding configurations
with minimal dangling bonds. This characteristic can contribute to their unique electronic,
mechanical, and optical properties (Allain et al. 2015). The absence of dangling bonds in 2D
semiconductor materials ensures that their surfaces are smooth and uniform, which minimizes
electron scattering and enhances electrical conductivity. By reducing reactive sites that could
otherwise trap electrons or degrade the material's properties over time, the absence of dangling
bonds in 2D semiconductor materials is critical for the development of high-performance
energy-efficient devices as it allows for faster electron transport and improved device reliability.
Furthermore, 2D materials are adept at operating at lower voltage levels without compromising
on speed, offering a promising avenue for reducing energy use in computing and electronic
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Figure 13. Selected 2D materials and their bandgap. Source: Chaves et al. 2020
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devices. For example, graphene, a single layer of carbon atoms arranged in a hexagonal lattice,
exhibits extraordinary properties, including exceptional electron mobility, mechanical strength,
and thermal conductivity. The discovery of the benefits of graphene spurred interest in a whole
class of monolayer 2D materials, each with its own unique properties and potential applications.

Although graphene exhibits excellent properties suitable for transistors, it lacks an innate
bandgap. To introduce a bandgap, graphene must be fashioned into nanoribbons. However, this
modification can lead to complications stemming from edge scattering effects and a significant
decrease in carrier mobility, eliminating graphene as a candidate for FET and limiting it to use in
interconnects and applications where switching is not the primary concern, such as thermal
management (Lin et al. 2010). Thus, there has been a shift in focus to other 2D semiconductor
materials, predominantly transition metal dichalcogenides (TMDCs) and hexagonal boron nitride
(h-BN) with innate bandgap ranging from 0.3 to 6 eV (see Figure 13), which is suitable for
conventional CMOS applications such as logic and memory (Chaves et al. 2020). With a layer-
dependent tunable bandgap and strong light-matter interaction, 2D materials are also suitable
for diverse optical devices such as photodetectors, modulators, lasers, and light-emitting diodes.

Logic and Memory

The evolution of the electronics industry has (@) 1.4]05=0.2eV Double gate
largely been propelled by scaling of the o ANL=1X10Pem? 1L WS-FET
contacted gate pitch (CGP) and metal pitch §1-2j 824: ~ -

(MP). This scaling has consistently enabled <104 250 _
platforms with superior performance and % 1 5

optimized power consumption. However, §0‘8j SiNS-FET @2nm no

achieving further area reductions SO.GA — Her=5Cm°/Vs
isincreasingly challenging due to processing £ 0.4] —— Uer=100cm?/Vs
limitations and intrinsic device constraints. a | — — Uer=200cm?/V/s
One major component of CGP scaling in 0.2 l.7==2nA Sy v
silicon-based technology, the gate length, 0.0 @0.7V5p a

appears to plateau beyond the 3-nm node, as 8 10 12 14 16 18 20
depicted in Figure 14 (Ahmed et al. 2020). As  (©) Channel length (L) [nm]

the gate length diminishes, a thinner channel § 2D ™ m o @2nm nodg
becomes essential to keep short channel re) : i EEC,.
effects under control. 2D-FETs have the £ si Wiyt (2D)=1040m , Wi,y (NS)=144nm  BEEIC, .
potential to prolong geometric scaling by S NS >t 0% (4% =é"
overcoming traditional scaling challenges - 0 20 40 60 80 100 120 1940
associated with these short channel effects Capacitance [aF]

due to their innate channels, enhanced
electrostatic control, and superior theoretical
mobilities. To demonstrate the advantages of
2D-FETs, Interuniversity Microelectronics
Centre (IMEC) has demonstrated a circuit-level power-performance-area evaluation at 2
nanometers between stacked 2D-nanosheets and Si-based counterparts. The results shown in
Figure 14 indicate an ~18% reduction in total capacitance (less energy required to switch a
transistor on/off) and ~22% improvement in drain current, which indicates lower operating
voltage (Ahmed et al. 2020). From these results, we can assume roughly 1.2 times the energy
efficiency improvement for 2D materials.

Figure 14. Si NS-FET versus 2D-FET. (a) Drain current
improvement and (b) capacitance improvement. Source:
Ahmed et al. 2020
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Several pressing challenges remain before this 2D-FET technology can be commercialized.
Most prominent among those challenges are material growth and transfer, which are detailed
below. Ultimately, to realize 2D-FETs, 2D materials are needed that are stable to the
environment, not adversely affected by edge scattering, and also CMOS- and HVM-compatible.
The knowledge gained from previous efforts with graphene and TMDCs may be helpful in
investigating other 2D materials.

Applications in Neuromorphic Computing

2D materials, notably transition metal dichalcogenides (TMDCs), have a tunable bandgap,
which allows for dynamic control over charge transport, enabling multi-level storage in analog
memory devices. 2D materials have imperfections that serve as charge trapping sites, and with
external voltage, these sites can hold charge, modifying the device's conductance for analog
storage (Cao et al. 2020). The nature of these traps, however, can be tailored by adjusting
defect characteristics. 2D materials (as well as other materials) also display resistive switching,
where resistance changes with applied voltage (M. Wang et al. 2018). This behavior, influenced
by factors like metal ion movement or charge dynamics at defects, can result in varied
resistance states for broader analog data representation. Furthermore, 2D materials show
promising retention times (>10 years), which are crucial for the longevity of stored states in
analog memories (Rehman et al. 2020).

Challenges and Solution Pathways for 2D Semiconductor Materials
Material Growth

Monolayer 2D devices have garnered attention through significant lab-scale demonstrations,
predominantly involving single-TMDC flakes. However, for these 2D materials to be broadly
adopted, the development of wafer-scale growth of 2D films is needed. In Figure 15, three main
techniques for producing high-quality monolayer TMDCs are shown: powder-based chemical
vapor deposition (CVD), metal-organic CVD (MOCVD), and molecular beam epitaxy (MBE)
(Briggs et al. 2019).

Powder-based CVD is preferable for research applications because of its low manufacturing
cost in synthesizing high-quality, defect-free TMDCs (Liu et al. 2015). However, source
concentrations cannot be independently adjusted, which restricts the potential of power-based
CVD for producing large-area TMDCs.

For the commercialization of 2D TMDCs, MOCVD and MBE are the preferred pathways.
MOCVD offers tight control over domain sizes and density, thanks to its precursor switching and
pulsing techniques. On the other hand, MBE heats ultra-pure sources in Knudsen effusion cells,
directing beams of atoms or molecules onto a heated substrate. Due to the exceptionally pure
materials and ultra-high vacuum conditions, MBE excels at producing high-quality, expansive
2D TMDCs (Yue et al. 2017). However, MBE for TMDCs faces challenges due to the high vapor
pressure of sulfur, which limits its application mainly to selenides and tellurides, barring a few
exceptions.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 30



Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

A) Powder-Based B} Metal-Organic c) Molecular Beam
Chemical Vapor Deposition Chemical Vapor Deposition Epitaxy
Carrier-Gas Metal-Organic Chalcogen Rlsn g:lEED
Ar, Hy N, [Mo{co),, Meci,| HSe, HS { reen
— wico), wel, i 05 cusion
— : T - Cells
Carrier I fis % -
Gas > . [N > L ’ )
Metal-Organic .
Bubbler /
Chalcogen : \f' :h
Powder Metal Substrates P4 Isolation -
Powder ® aun l I RHEED
Gun
Manipulator
15 7
+ Solid pecursors = Solid, liquid, gas + Primarily solid
+1 — 800 Torr precursors precursors
+ 500 - 800°C +1 =800 Torr - « 107 Torr
» Complex reactions - 500 — 800°C 1-few layer - 200 - 800°C
= Complex reactions Wse, i 4 + Elemental reactions
0 S -

Figure 15. Overview of synthesis techniques of single to few layer TMDC flakes. Source: Briggs et al.
2019

While MOCVD and MBE hold promise for synthesizing large-area 2D TMDCs, several
challenges must be addressed before they can be widely adopted for these materials. With their
high-vacuum and ultra-high vacuum environments, these techniques come at a higher cost
compared to other methods. Furthermore, their inherent complexity—coupled with concerns
over scalability, growth rate, and consistent production of defect-free large areas--poses
significant barriers. For precise parameter control, robust modeling and simulation practices are
still in development.

Material Transfer

Once high-quality, defect-free monolayer 2D materials are produced, an efficient, high-quality,
and repeatable transfer technique is needed for device fabrication. Presently, the transfer of 2D
materials often involves the use of hazardous chemicals, including hydrofluoric acid (HF),
hydrochloric acid (HCI), and nitric acid (HNO3) (Elias et al. 2013). Not only are these substances
environmentally unfriendly, but they also compromise the quality of the film during the process.
Strong bases like potassium hydroxide (KOH) and sodium hydroxide (NaOH) have been
explored as alternatives, but these etchants can similarly degrade the film quality and impair
device performance due to their high corrosiveness and inadvertent doping effects (Wang et al.
2014). Research on a suitable transfer methodology is still ongoing. For example, the ultrasonic
bubbling transfer method utilizes microbubbles produced by ultrasonication to lift the film from
the substrate (Ma et al. 2015). However, this technique can introduce cracks and wrinkles to the
transferred film. Regardless of approach, the transfer process must be CMOS-compatible to
leverage existing processes and tools for wafer fabrication.
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Action Plan for 2D Semiconductor Materials

Table 5. Action Plan for 2D Semiconductor Materials

Technology for
Energy Efficiency:

2D material-based devices, primarily TMDCs and h-BN

Technology of Interest: Logic

Challenges Solution Pathways

. Transition to other 2D materials (away from graphene)
with innate bandgaps suitable for various applications,

. Develop process for scalable synthesis and post-growth including Stanford University’s Nano-Engineered
transfer (if needed) of 2D materials and post. Computing Systems Technology (N3XT).
. Maintain consistent thickness of 2D materials. . Leverage 2D-FETs for further device miniaturization and

. Minimize defects in 2D materials. enhanced energy efficiency.

. Investigate key TMDC growth techniques: powder-based

. Alleviate thermal stability and contact resistance issues at 2D CVD, MOCVD, and MBE.

materials interfaces.

. Address challenges in transferring high-quality 2D
materials using innovative methods.

Major Tasks/Milestones Metrics Targets Timeline (years)
. o =lEEE EEeIE Establish standardized characterization
Discovery and characterization bandgap measurement, rotocols 1-2
mechanical strength P
Bandaap values. uniformit Achieve tunable bandgap ranges
Bandgap engineering 9ap ’ y suitable for semiconducting 2-3
across samples .
applications
Research on production Rate of synthesis, purit DEVEIED ME NS 7 (e S22l
e Y » purity, production with less than 1% defect 3-5
techniques defect density .
density
Transfer Technique Quality retention post- Refine transfer methods to maintain 1-2
Development transfer, throughput >95% quality retention
L . o
Commercialization roadmap Cost per area, scalability Reduce production cost _by 50%, 4-6
metrics create a scalable commercial process
Integration with current Compatibility, performance Integrate W'th existing CMOS
) processes with demonstrated 3-4
technologies benchmarks .
performance benefits
. . . o - .
End-to-end testing Device failure rates, Achieve less than 5% device failure 2_3
performance metrics over standard testing procedures
Stakeholders and Potential Roles in Project
Stakeholder Role
. Synthesize high-quality, scalable 2D materials.
Product Manufacturers/Suppliers | ® Develop transfer methods preserving material integrity.
. Innovate in device integration and performance testing.
. Specify performance and integration requirements.
End Users/Original Equipment | §  pjjot test new 2D material-based components.
Manufacturers (OEMs)
. Provide feedback for material and device optimization.
. Conduct fundamental research on 2D materials.
Academia . Explore novel properties and potential applications.
. Collaborate on translating lab-scale successes to industry-scale processes.
Required Resources ‘ Cross Collaboration Needs of Working Groups
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. Circuits and Architectures: Optimize the interplay between
. Advanced material synthesis equipment. algorithmic design, software, and hardware for enhanced

. High-precision characterization tools. energy efficiency.

. APHI: Ensure novel materials are integrated into next-

o Funding for interdisciplinary research and development generation packaging solutions.

projects.
. MEES: Integrate 2D materials into current infrastructure.

2.1.2 Carbon Nanotube-Based Devices

Single-wall carbon nanotubes (CNTs) have unique characteristics—including ultrathin (1D)
body, high and symmetric electron and hole mobility (Franklin et al. 2012a), outstanding current
density, and very low parasitic—that make them promising materials for transistors that are
more energy-efficient than conventional Si CMOS.

CNTs come in two electrical types, semiconducting and metallic, determined by their chirality.
As shown in Figure 16, Y Y\
CNT chirality is defined by E
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based devices, particularly affecting threshold voltage and off-current due to thermally excited
charge carriers.
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Conductivity in CNT is sensitive to impurities and defects that cause scattering. With their
single-atom thickness, external adsorbents and contamination directly influence carriers through
scattering but also by gating semiconducting CNTs. This makes CNTs candidates for single-
molecule sensors but also raises contamination as a key issue. Contaminants introduce
significant hysteresis through charge traps that fill slowly, leading to low yield, high device
variability, and performance degradation. While significant progress has been made in
controlling the chirality and diameter of CNT material while keeping it clean, challenges remain.
Requirements for material purity (including chirality) and quality (e.g., lack of defects and
consistent length) will vary for different classes of devices (logic and memory-for-compute), as
detailed in the proceeding sections.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 33



Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

While the benefits of CNT-based devices are clear, most research has been in laboratory
settings. Commercialization requires more research, testing, and progress before justifying new
facilities or risking contamination of current, expensive, and entrenched semiconductor
processes and equipment.

2.1.2.1 Carbon Nanotubes Field-Effect Transistors

In CNT field-effect transistors (CNTFETs), CNTs are used as the channel material where an
applied gate field lowers the barrier for carrier injection from metal contacts. Due to their ultra-
thin 1D geometry and high carrier mobility, CNTs overcome short channel effects that hamper
Si MOSFETSs below the 10nm node. CNTs also demonstrate near-ballistic carrier transport,
further amplifying their value for energy-efficient computation. To date, several groups have
demonstrated the potential for CNTFETSs in various devices, including complementary devices
(Ding et al. 2012; Han et al. 2013) and devices with channel lengths scaled below 9nm (Franklin
et al. 2012b) and operating voltage below 0.5 V (Wei et al. 2013). However, these
demonstrations typically rely on a single transistor or a few CNT transistors, and CNT-material
production is the critical bottleneck to commercialization. The next major step is to demonstrate
these characteristics with CNT-dense devices that are comparable or better than Si.

To be competitive with 2nm silicon technology, CNTFETSs require >99.9999% semiconducting
CNTs, a diameter of < 1.2nm for low off-current, and a density of >125 CNTs/um? (IRDS 2022).
The CNTs must also be sufficiently long and free of contaminants. These requirements are far
more stringent than those needed for CNT memory, RF CNTFETSs, and CNT-based sensors.
Atomic-level control of CNT production is paramount to the demonstration of CNTFETSs for logic.

First-generation CNT devices will use metal interconnects like Si CMOS, where most energy is
lost in chips. Thus, the energy improvement over current silicon technology (Si FinFET) will be
modest (~3 times). However, the ability of CNTFETSs to be stacked and monolithically 3D-
integrated is where they truly provide efficiency benefits. Aly et al. proposed a novel computing
approach (Nano-Engineering Computing Systems Technology [N3XT]) that monolithically
integrates logic and memory, leveraging CNTFETSs as the logic component, and shows a 1,000x
improvement in energy-delay product compared with conventional Si technology (Aly et al.
2015).

Table 6. Energy Impact and Timeline Estimates for Carbon Nanotube Field-Effect Transistors

Expected LRI Commercial Energy Impact Timeline for

Performance T Benchmark Factor TRL 6
Product

Technology

SiGe FinFET or

CNTFET (logic) 0.2 pJ/cycle GAA-FET

0.6 pJ/cycle 3 3-5 years

Studies like these (and many more) convey the potential impact of CNTFETs. However,
significant challenges remain.

Challenges and Solution Pathways for Carbon Nanotube Field-Effect Transistors
Carbon Nanotube Material Production

Currently, there are three dominant methods of producing CNTs for electronics, each method
has its own challenges.
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CVD Growth With a Catalyst

CNT growth via CVD produces pristine/contamination-free and high-performance CNTs but has
not yet shown adequate chirality and diameter control for digital applications. Early CVD growth
using iron catalyst and other materials yielded CNTs with varying diameters and a mix of
semiconducting and metallic tubes (Molckovsky et al. 2019). Current efforts have used
controlled catalyst size to selectively grow CNTs in a narrow diameter distribution and used
CVD conditions to drive higher semiconducting CNT yield. While progress has been made,
more work is needed to fine-tune the process and increase selectivity and CNT density. More
broadly, CNT CVD growth is not well understood, and fundamental experimental and modeling
efforts are needed to accelerate progress.

Purification Through Polymer-Conjugation Sorting

CNT purification with polymer conjugation was pioneered by Mark Hersam and Mike Arnold at
Northwestern University nearly 20 years ago. The polymers differentially bind to CNTs by
diameter and chirality, allowing them to be separated in solution via one or more cycles of
ultracentrifugation. Enriched semiconducting purity CNTs can then be distributed from solution
on wafer, either without order or aligned using varying methods including floating evaporative
self-assembly (Brady et al. 2016). Selectivity of >99.99% semiconducting purity and sufficient
density for digital applications has been shown, but the processing results in damage and short
tubes. While significant progress has been made using this method—including the first 100 GHz
(Rutherglen et al. 2019) and THz CNTFET (Z. Zhang et al. 2023) demonstrations—the complete
removal of the polymer wrapping remains a key challenge that continues to hinder device
performance.

Purification Using Nonpolymer-Conjugation Sorting

Post-growth on-wafer purification involves removing the metallic CNTs from pristine CVD-grown
tubes directly on a wafer. This method utilizes the electrical or optical response of the CNTs
themselves to identify and remove the metallic CNTs. The electrical response is used in VLSI-
compatible metallic CNT removal (VMR), which removes metallic CNTs in formed CNTFETs by
flowing current through them with the semiconducting CNTs turned off by a sufficient gate
voltage. The current in the metallic CNTs can be either sufficient to destroy the CNTs like a fuse
or sufficient to heat and thereby pattern a masking layer, leaving the metallic CNTs exposed to
etch chemistry (Shulaker et al. 2015). The primary challenge with this approach has been
degrading the remaining semiconducting CNTs, thereby degrading CNTFET performance.
Rapid progress is now being made using the optical response of CNTs. Here, like in electrical
heating post-CNTFET formation, selective heating of metallic CNTs through electromagnetic
energy absorption in the RF (Xie et al. 2014) or visible/IR (Du et al. 2014) ranges have been
demonstrated.

Regardless of approach, continued and sustained R&D of CNT material production to fabricate
CNTFETSs that meet digital logic requirements is needed.
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Contact Resistance

In addition to CNT material production, contact resistance is another fundamental materials
challenge holding CNTFETSs from their theoretical/projected potential. Because ballistic
transport with extremely low resistance can be achieved for CNT lengths below 40nm, the
contact resistance ultimately determines CNTFET performance for scaled devices (Franklin et
al. 2014). The best CNTFET contacts allow for much lower bias voltages and thereby significant
energy savings over Si. As with Si, the choice of metals and heat treatments can vary these
resistances across a few orders of magnitude. Broadly, the interaction and transport
phenomena at the CNT-metal interface are not well understood. Previous studies (Franklin et al.
2014; Pitner et al. 2019) investigating side contacts, varying overlap, and carbide formation with
various metals have generated useful insights. Most studies were carried out on single-CNT
devices, and devices with sufficient, dense CNTs will likely have a distribution of overlaps and
resistances. A more fundamental understanding of interface and transport behavior may
ultimately accelerate the time to a feasible solution. As such, ab initio modeling of the CNT-
metal interface and experimental validation on high-density CNTFETs is a key pathway. Other
solutions include experimental study of new metals, including carbide-based materials and work
function matching.

Dielectric Materials

Consistent with silicon-based FETSs, high-k gate dielectrics are needed for sufficient gate
capacitance and current control in CNTFETSs. Identifying the appropriate gate dielectric material
and processing steps remains an open challenge. Atomic layer deposition (ALD) is the
dominant method and aluminum, hafnium, and zirconium-based dielectrics have been explored.
Owing to the geometry and chemistry of (subject), conformal, uniform growth on CNTs has been
difficult. An additional complexity for CNTFETSs is the potential for uncontrolled, secondary
reactions of the ALD precursor and the CNTs (Simmons et al. 2006), resulting in unexpected
and degraded CNTFET performance. Various strategies, such as self-assembling monolayers
prior to deposition, have been employed to mitigate this problem with varying results.

Dielectrics have also been found to dope CNTs, reflecting the CNT-dielectric interface
properties. Typically, CNTFETs are p-type devices at ambient conditions, but recent studies
have shown n-type behavior using hafnium dioxide (HfO,), thought to be due to the positive
fixed charges at the CNT-HfO; interface (Moriyama et al. 2010). This finding provides a pathway
to enable complementary CNT devices through dielectric doping in the spacer region through
the right material combination. Regardless of gate or spacer dielectric, further research is
necessary to refine deposition techniques for CNTFETSs. This includes exploring requisite pre-
treatments and post-processing steps aimed at minimizing CNT damage or contamination.
Additionally, an in-depth examination of material chemistry is essential to develop CNTFETs
that feature high-density CNT arrays.

Device Performance, Modeling, and Simulation

A consistent device model is needed to allow system simulations for CNTFETs. While several
compact models for CNTFETs have been created, consistent device designs and data are
needed for parameter extraction, most of which come from university labs at present. A
consistent fabrication capability and large datasets are also necessary, which is only possible in
industrial facilities with process control. In fact, because there are no clear winners in any of the
core CNTFET components (e.g., CNT production, dielectrics, contacts, device architecture), it is
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a challenge to generate a compact model that holistically considers all combinations. At present,
each model consists of the components that the modeler finds appropriate or most promising.
Until these pieces are firmed up, a consistent model may be difficult to formulate.

Foundry/Process Integration

The way in which CNTFETSs will be integrated with existing foundry and CMOS processes is still
an open question. Contamination stemming from CNTs and their likely contact metals is a
serious concern for industry. While the general processing steps (e.g., lithography, deposition,
or etch strip) for a CNTFET are not significantly different from CMOS, changes will be required
to accommodate the materials used in these processes and may require a parallel set of
processing tools. As a first step in facilitating this transition, a collaboration between CNTFET
developers and commercial R&D facilities—like Skywater, SUNY NanoTech, and IMEC—uwith
the goal of developing a process design kit (PDK) for CNT-based devices, would accelerate
progress. It should be noted that CNT-CMOS co-fabrication was done at Skywater through the
DARPA ERI program. While the project was ultimately unsuccessful due to insufficient system-
level performance resulting from poor CNT material, it nevertheless provides a blueprint for how
CNTs can be integrated into a fab.

Action Plan for Carbon Nanotube Field-Efficient Transistors

Table 7. Action Plan for Carbon Nanotube Field-Efficient Transistors

Technology for
Energy Efficiency:

CNTFETs

Technology of interest Logic

Challenges Solution Pathways

. Continue to develop primary CNT manufacturing pathways

. Achieve consistent CNT quality for improved device energy (listed above).

efficiency. . Leverage advanced dielectrics and spacers to tune and

. Develop dielectrics for "CNT doping" to boost device enhance device performance and energy requirements.

performance. . Complete a comprehensive and fundamental study of

. Understand CNT-metal interfaces for charge transfer. contact metals and CNT.

. - . Develop compact models for accurate simulation and
] Ensure device performance for real-world applications. design
. Bridge the gap between lab innovations and mass production. . Scale CNT technologies for integration with current

manufacturing processes.

Major Tasks/Milestones Metrics Targets Timeline (years)
Semiconducting to metallic >99.99% 1-3
. . CNT ratio >99.9999% 3-5
Improving CNT material
production Current per CNT >15 uA/CNT 1-3
CNT density 100 CNTs/um 3-5
Breakdown field (gate) 6 MV/cm 1-3
Effective oxide thickness
3nm 1-3
(gate)

Explore dielectric materials and
deposition techniques Dielectric constant (spacer) SiOx or better 1-3

Effective field of £+1V normalized by an

Doping (spacer) EOT similar to the gate

Improving contact resistance Resistance <30 kOhm/CNT across devices 1-3
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Energy delay product 10x improvement over Si-GAA 3-5
CNTFET performance 3-5 for e-beam,
Gate resistance <5 kOhm/CNT contact many more for

EUV

Introduction of CNT material into

multi-user commercial R&D Throughput d 1’0c(|)0 _waf_ers/mon_thl W'thOUt.
foundry egradation in material properties

Stakeholders and Potential Roles in Project

Stakeholder Role

3-5

R&D companies
) Develop CNT material and devices. As of this writing, the authors are aware of only 4 U.S.
startups doing active CNT development (versus dozens 10+ years ago): Aligned Carbon,

Product Manufacturers/Suppliers Carbon Technology, Nantero, and SixLine.

Commercial R&D foundries

. Fabricate devices, develop PDKs, and complete electrical characterization (commercial R&D
foundries).

. Engage in fundamental materials and device research, modeling, and simulation.

Academia
. Develop and conduct advanced metrology.
Required Resources ‘ Cross Collaboration Needs of Working Groups

o Material simulation: ab initio calculation for CNT-metal contact o ) ) o

interface. e  Circuits and Architectures: Evaluate benefits of monolithic

o ) ) . 3D integration of CNTFETs; modeling and simulation of

e Circuit modeling and simulation: compact models and system system level performance from device characteristics.

models.

o ) o ) e  Metrology and Benchmarking: Evaluate and understand

e  Facilities, including access to nanofabrication foundries, CNT contamination (atomic scale) and its impacts on

advanced nanoscale metrology, and electrical testing device performance, benchmark CNTFET performance.

capabilities.

Carbon Nanotube Memory

Unlike logic, memory applications have significantly less stringent requirements for CNT-based
devices. CNT memory (e.g., NRAM from Nantero) utilizes a mat of CNTs that deflect and open
a gap between electrodes when a voltage is applied. This gap creates a sufficient change in
resistance between the two electrodes to register a 0 or 1. The CNT mat is produced via
commercial fab standard spin coating and annealing. Because CNTs in this configuration are
multi-layered and are not channel materials, requirements for uniformity in chirality and
selectivity (semiconducting vs. metallic) are relaxed.

The current instantiation of CNT memory (NRAM) is a single-layer, 2-gigabit capacity memory
on a 22nm die. NRAM'’s performance is comparable to existing DRAM products, but its non-
volatile nature significantly enhances efficiency, reducing power consumption by an average of
33% in the DDR4 performance in active. Research indicates that approximately 50% of DRAM
in data centers is idle, consuming 30% of the power used during active periods. Substituting
DRAM with NRAM could lead to an average power saving of 15% in idle due to NRAM’s lower
idle power requirements (Zhang et al. 2014). Additionally, NRAM's non-synchronous bank-level
operations for reading and writing, coupled with a GHz clock only present in interface circuitry,
further reduce active power consumption. Nvidia's research suggests that smaller data
accesses (512B or 256B) are more efficient in GPUs, occurring 80% of the time. NRAM's
adaptability with flexible page sizes (down to 256 bits) and the ability to handle multiple pages
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simultaneously can lead to a 75% power reduction during these frequent operations (Chatterjee
et al. 2017).

Table 8 estimates energy impact and timeline for comparing NRAM and DDR4 DRAM in
2Kbit/page mode.

Table 8. Energy Impact and Timeline Estimates @ for Carbon Nanotube Memory

Metric NRAM DDR4 DRAM ‘ Impact Factor Timeline for TRL 6
Energy per bit 5 fJ/bit 7 fJ/bit 1.4x
Non-volatile Yes No -
Latency 5ns 15 ns 3x
3 years
Frequency 64 GB/s 64 GB/s 1x
Active power 260 mW 408.3 mW 1.6x
Idle power 0.8 mW 85.5 mW 106x

@ Source: Micron Technology 2017
Challenges and Solution Pathways for Carbon Nanotube Memory

Foundry/process integration and contamination

At present, NRAM processes and materials have been defined and fab integration remains the
dominant challenge in bringing NRAM to market. Unsurprisingly, concerns over contamination
have barred access to fabs. Contamination tests have been completed and previous NRAM
runs in R&D fabs have had no issues. Ultimately, fab runs at leading edge nodes are needed to
identify areas of further development to continue moving this technology forward.

Action Plan for Carbon Nanotube Memory
Table 9. Action Plan for Carbon Nanotube Memory

Technology for

Energy Efficiency: CNT memory
Technologies of Interest: Memory
Challenges ‘ Solution Pathways

. Secure access to manufacturing facilities for CNT technology to
demonstrate technology at leading edge nodes. e Alleviate CNT contamination concerns through BEOL short

) ) loops and post-process contamination characterization.

. Scale technology to relevant memory capacity/density.

Major Tasks/Milestones Metrics Targets Timeline (years)
JEDEC approval of the DDR5/DDR6 SDRAM
Complete specification for non- DRAM specs HBM4/HBM5 o4
volatile DRAM replacement CXL specs CXL
UCle specs UCle

Deployment and adoption of CNT
fabrication process in current 1
infrastructure from industry

CNT fabrication process in

Fab integration current infrastructure
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Stakeholders and Potential Roles in Project

Stakeholder Role

. Integrate CNT process and materials into fab operations.

Product Manufacturers/Suppliers
PP . Integrate CNT memory into product.

End Users/OEMs . Define requirements for various applications.

. Define standards for certain applications (e.g., data security).

Academia ;
. Develop standards that comprehend CNT memory semantics.

Required Resources Cross Collaboration Needs of Working Groups

. Circuits and Architectures: Develop comprehension and

. Production of NVM technology in commercial fabs. application of CNT memory to memory protocol.
. Integration of NVM technology with existing systems. . APHI: Provide chiplet support and integration for NVM
devices.

2.1.3 Spintronic Devices

Spintronic materials, the building blocks for spin transport-based electronic devices, rely on an
electron’s charge, as well as its magnetic spin to perform computations and store data. These
materials offer the potential for circuits that can achieve low power consumption and high
endurance, with competitive read and write performance. While ideal spintronic devices promise
negligible standby power dissipation, practical implementations have yet to achieve this due to
perfect spin polarization or detection efficiencies. Current state-of-the-art spintronic devices, as
demonstrated by Ikeda et al., achieve on-off ratios of 7:1 at room temperature. While not
approaching the on-off ratios of experimental CMOS technologies, these 7:1 at room
temperature ratios still mark a significant advance owing to their non-volatility (Ikeda et al.
2007). This inherent non-volatility in spintronic devices is a distinct advantage over CMOS with
respect to energy efficiency because it enables data retention without power. Recent advances
in 300 mm processing and manufacturing tools have led to the availability of spintronics
manufacturing capacity within back-end-of-line facilities at leading semiconductor foundries (Lee
et al. 2018).
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Figure 17. Comparison of energy and delay of a 32-bit
adder among various charge- and spin-based devices.
Benchmarks show performance and switching energy
versus delay time. Source: Pan and Naeemi 2018
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devices: current-controlled and voltage-controlled.
Voltage-controlled devices are orders of magnitude
more energy-efficient than current-controlled and are
the preferred type. Voltage-controlled
magnetoelectric spintronic logic devices (e.g.,
MESO) have the potential for 30x (or more)

Figure 18. The magnetoelectric FET with
performance shown for a channel with a spin-
orbit splitting of only 100 meV. With a channel
of 0.5 eV spin-orbit splitting the on/off ratio might

approach 10* (Dowben et al. 2018)

improvement over CMOS. However, many of the devices are reliant on ferromagnetic materials,
which are slower than CMOS since moving spin textures (e.g., domain walls) or switching the
magnetization of a single-domain element is slower than charging the gate capacitors. Thus,
more recent work focuses on magnetoelectric transistors without ferromagnetism.

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 41




Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

Structurally, magnetoelectric transistors are quite straightforward, as shown in Figure 18.
Magneto-electric FETs can streamline a full adder from 28 transistors to merely eight device
elements, which could lead to a considerable reduction in energy costs and an increase in
operational speed (Sharma et al. 2020). However, more complex structures pose integration
challenges with current CMOS technologies (Mahmood et al. 2021). Despite these hurdles,
recent strides have been made in developing magnetoelectric or multiferroic non-volatile
technologies, which have the potential to transform the landscape of electronics (Manipatruni et
al. 2019; Vaz et al. 2021; Kosub et al. 2015; Kosub et al. 2017; Mahmood et al. 2021; He et al.
2022).

Table 10. Energy Impact and Timeline Estimates? for Spintronic Logic

Technolo Expected Commercial Benchmark Commercial aneragc); Timeline for
gy Performance Product Benchmark Faztor TRL 6

Spintronic

. 50 fJ/switch CMOS HP 100 fJ/switch 2 10 years
(Logic)

@ Source: Puebla et al. 2020

Challenges and Solution Pathways for Spintronic Logic
Switching Error

In Boolean logic, write error rates of approximately 10-' are required for reliable device function
(Manipatruni et al. 2019). As a standalone, spintronic devices fall short with typical error rates
around 10-° or worse (Manipatruni et al. 2018). Furthermore, if integrating with CMOS, the
discrepancy in on/off will cause significant switching errors.

One key strategy to address these issues involves the exhaustive exploration of alternative
materials and switching mechanisms with the potential for a thousandfold energy reduction. A
rigorous approach would entail computational modeling to identify materials most likely to
achieve the requisite low error rate, followed by experimental validation. This process would
include initial film measurements and subsequent prototyping to empirically validate switching
performance. Additionally, a comprehensive understanding of materials, defects,
inhomogeneities, and process issues is essential for identifying the root causes of switching
errors.

Energy To Switch Magnetization

Improving the energy efficiency of switching mechanisms in spintronic devices requires both
material and architectural innovation. Various magnetoelectric materials are being studied for
their potential to minimize leakage and reduce coercive voltage. Component magnetic materials
must be identified that can be heterogeneously integrated into a layered structure for optimal
performance, while also considering scalability.

Currently, MESO and other logic devices could benefit from four classes of materials: (1) spin-
orbit coupling materials for spin-to-charge conversion, (2) magnetoelectric materials for charge-
to-spin conversion, (3) interconnects scalable to nanoscale widths, and (4) nanomagnets
(Manipatruni et al. 2019). For magneto-electric FET, the key challenges are finding a spin-orbit
coupling material for the semiconductor channel with large spin orbit coupling and a
demonstration that the magneto-electric can be scaled to small volumes and low coercive
voltage while still retaining fidelity to 400 K. Material selection should account for attributes like
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coupling strength, temperature stability, scalability, chemical resilience, and non-volatility.
Considerable R&D efforts are needed to achieve this goal.

Fabrication

Fabrication of spintronic logic devices presents challenges, especially when targeting integration
with established CMOS technology. Material contamination is of note. During the ion milling
stages of fabrication, contamination can lead to the shorting of the oxide tunnel barrier, which is
crucial for the spintronic memory/logic read-out circuit. This problem becomes pronounced
when forming both memory and logic devices on CMOS substrates. The introduction of new
materials often necessitates specialized buffer layers or substrates. Moreover, these materials
might require high-temperature processing, rendering them incompatible with the amorphous or
polycrystalline texture of existing surface materials, such as TEOS or metallized via stub.

One possible pathway to advance spintronic devices within the CMOS framework is the
development of CMOS-based test vehicles. An exemplary initiative is the Daffodil chip at NIST.
This chip delivers a flexible design intended to enable research and development into two-
terminal resistive memory and selector devices and can make assessments of write-energy,
write-delay, and switching error metrics across diverse prototypes, thereby evaluating
integration-level performance (Hoskins et al. 2021). This chip can integrate spintronic device
arrays in the BEOL on CMOS reticles. To ensure the viability of this integration, it is vital to
pinpoint small-batch tape-out opportunities and leverage the appropriate circuit topologies to
efficiently integrate BEOL spintronic devices with CMOS. Opportunities like the Google-NIST
partnership, Nanotechnology Accelerator Program, will deliver even more test vehicles that
could help researchers transition new spintronic materials and spintronic logic devices using an
industrially relevant platform (Google Open Source Blog 2022).
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Action Plan for Spintronic Logic
Table 11. Action Plan for Spintronic Logic

Technology for
Energy Efficiency:

Spintronic logic device

Technology of Interest: Logic

Challenges Solution Pathways

. Explore alternative materials and switching mechanisms

. Reduce switching error rates, error rates around 1015 for through computational modeling and empirical validation
reliable operation are required. to achieve low switching error rates.

. Integrate spintronics with CMOS technology, addressing poor . Develop magnetoelectric materials to improve energy
on/off ratios of standalone spintronic devices. efficiency, focusing on leakage minimization and

. Identify and utilize materials and mechanisms that can reduction of coercive voltage.

significantly reduce the energy required to switch magnetization | e Advance CMOS-compatible test vehicles like the Daffodil
in spintronic devices. chip at NIST for research and development of two-

T ) s terminal resistive memory and selector devices.
. Address nanofabrication intricacies, including contamination y

issues during ion milling and the incompatibility of new . Leverage small-batch tape-out opportunities and
materials with established CMOS processes. appropriate circuit topologies for efficient BEOL
integration of spintronic devices with CMOS.

Major Tasks/Milestones Metrics Targets Timeline (years)
Material selection for switching o . 15
error Switching Error Rate 1in 10 5
Energy efficiency of spintronic Energy to Switch < 100 aJ/switch 5-10
devices Magnetization
ln Egiziton el G512 Successful Demonstration BEOL integration with CMOS 5-10
technolog
Stakeholders and Potential Roles in Project
Stakeholder Role

. Fund academia and start-ups (e.g., Intel through SRC funded materials and benchmarking

Product Manufacturers/Suppliers
work.

. Develop specialized synthesis or patterning tools to accommodate diverse materials.

End Users/OEMs ) ) )
. Develop new patterning IP due to cross-junction type stacks.

. Simulate and demonstrate materials and devices.

Academia . Test materials and devices (includes materials growth, device fabrication, and testing over
millions of cycles).

Required Resources Cross Collaboration Needs of Working Groups

. Testing capabilities, develop metrology and infrastructure.
. Circuits and Architectures: Develop novel approach to

e Access to small sample prototypes. Small number of runs on integrate with CMOS.

their equipment for demonstration on their platforms. ) )
. Metrology and Benchmarking: Measure materials.

. Supplements to academia to upgrade current infrastructures.
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Spintronic Memory

At its core, spintronic memory relies on
precise manipulation of electron spins for

10" 3

. . 3 @& =
data storage. In spintronic memory, the 10'3 e
orientation of the spins can be aligned or ] ® SIT-PMA
anti-aligned. These alignments represent 10°- SHE @ ® SD-PMA i

the binary states (0 and 1) of digital data.
Because the magnetic states are
inherently stable without the need for a
continuous power supply, the data remains 1
"non-volatile" or persistent even when the 10°3 ® mE -
device is powered off. Non-volatility is a * : 523:22’3?.122

key parameter for energy-efficient ot P o

10"

Total Write Access Energy (fJ)

computing and Al hardware. One 10° 10* 10°
technology that offers non-volatility and TOtAEINIHRACCE A TH i (]

endurance (Bhatti et al. 2017) is spintroniC  Figure 19. Write energy vs. write delay for various types
memory realized with magnetic tunnel of spintronic memory cells. Star shows the desired target
junctions (MTJs). In MTJs, the (Pan and Naeemi 2017)

magnetization orientation of a soft

magnetic layer is switched utilizing spin-transfer-torque (STT) by a current that is polarized by
the reference (or hard) magnetic layer, whose magnetization orientation is fixed (Slonczewski
1996). The problem, however, is that such spin-transfer-torque magnetic random-access
memory (STT-RAM) devices require ~100 fJ/bit to switch (Nowak et al. 2016), which is 1,000
times more than the ~100 aJ energy required to switch CMOS devices (Datta, Diep, and Behin-
Aein 2015). Furthermore, the need for large currents to switch MTJs necessitates the use of
CMOS devices with larger node sizes, thus impeding the scaling of this technology. But if the
switching current can be reduced by approximately one-half, these devices can be integrated
with smaller CMOS devices, which would make MTJ MRAM competitive or superior to
embedded DRAM and SRAM at the last level cache (Worledge 2022). This possibility motivates
a search for more energy-efficient and low current switching mechanisms to reverse the
magnetization while simultaneously keeping the switching error low.

Table 12. Energy Impact and Timeline Estimates for Spintronic Memory

Commercial

Expected Commercial Energy Impact Timeline for
LGl Performance iz uClLS Benchmark Factor TRL 6
Product
Sl 100 aJ/bit STT-MRAM 100 fJ/bit 1,000 10 years
(Memory)

Some of the key methods studied as an alternative to conventional STT-MRAM include spin
orbit torque (SOT) (Liu et al. 2012) and voltage control methods, which include direct voltage
control of magnetic anisotropy (Kanai et al. 2012) and strain-mediated voltage control
(Atulasimha and Bandyopadhyay 2010). Additionally, there are other emerging techniques
being explored to enhance the functionality and efficiency of spintronic devices.
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Applications in Neuromorphic M STT-MRAM

Computing Bitline
. . Free Layer

Nonvolatility and nonlinear

magnetization dynamics in Barrier Layer

spintronic materials, such as those Fixed Layer

found in STT-MRAMs and MTJs,
are quintessential for the
development of neuromorphic
analog devices because they Access Transistor
enable the emulation of complex
synaptic and neuronal
functionalities, akin to biological
counterparts (Vincent et al. 2015; Borders et al. 2017). Non-volatility ensures that these devices
retain information without a constant power supply, mirroring the human brain’s energy-efficient
information retention, which is vital for instant-on capabilities and reducing power-intensive
operations. The non-linear response of these spintronic materials is analogous to biological
synapses, whose strength is modulated by the timing and frequency of neural signals, thereby
enabling synaptic plasticity, which is central to learning and memory. Furthermore, the potential
for three-dimensional stacking of spintronic devices echoes the dense neural networks of the
brain, allowing for a compact yet complex network that facilitates vertical communication, which
optimizes both space and functionality for advanced neuromorphic computing architectures
(Grollier et al. 2020).

The primary challenge to realize MTJ crossbar arrays is the relatively low resistance ratio
between the on/off states, making it difficult to read the junction state. Addressing this challenge
calls for both material advancements to increase resistance variations and the design of efficient
low-power circuits for state reading (Parkin et al. 2004). Given that spintronic behavior can be
predictively described based on physical phenomena, implementation for neural networks is
achievable (LeCun, Bengio, and Hinton 2015).

Figure 20. STT-MRAM device structure. Source: MRAM-info 2023

Challenges and Solution Pathways for Spintronic Memory
While spintronic memory is more mature than spintronic logic, the development of spintronic
memory still faces its own set of challenges.

Switching Error

While memory inherently has a more forgiving threshold for switching error compared to logic—
owing to its primary role in data storage and retrieval versus the real-time computational
demands of logic devices—this tolerance narrows considerably as device dimensions diminish
and industry pushes for enhanced memory density and energy efficiency. Stochastic processes
and thermal fluctuations can interfere with the accurate switching of electron spins, failing to
change the magnetic state as intended. Such switching errors compromise the reliability of the
memory. The leading commercialized STT-MRAM technology currently exhibits a switching
error rate of 106, The newer magnetoelectric (ME) spintronic devices are comparable to
conventional SRAM at 10-'* with the additional advantage of being non-volatile (Manipatruni et
al. 2017). Despite being a relatively recent area of study, ME devices harness electric fields to
adjust the topologically protected spin current in the semiconductor channel. This mechanism
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affords ME devices advantages in terms of reduced power consumption and enhanced
switching speeds compared to conventional STT-MRAM that depends on spin-polarized
currents. To achieve better switching error, R&D is focused on identifying optimal magnetic
materials with minimized variability and exceptional thermal stability. Efforts are also directed
towards refining the geometry of MTJs for improved stability, implementing error correction
codes for post-event error mitigation, and utilizing sophisticated simulation tools, allowing
researchers to gain deeper insights into the root behaviors contributing to switching errors.

Energy and Current to Switch Magnetization

Alternative magnetic order, such as ferromagnetic and antiferromagnetic configurations, can
offer several advantages over existing spintronic memories, including those based on
ferromagnetic materials and MTJs. Antiferromagnetic materials, when integrated with SOT
mechanisms or voltage-switched schemes, demonstrate potential for ultra-fast switching with
minimal energy costs. Furthermore, recent works suggest that there are suitable room-
temperature readout mechanisms for antiferromagnet-based non-volatile memory (Xiong et al.
2022).

Key areas to explore include identification of materials and processing to fabricate double-
barrier magnetic tunnel junctions (Hu et al. 2015; Khanai et al. 2021), the use of voltage-
modulated perpendicular magnetic anisotropy (Bi et al. 2017), and voltage-modulated exchange
coupling (Zhang et al. 2022). Other worthwhile areas to explore include spin-transfer torque for
switching, as well as spin-orbit torque combined with spin-transfer torque switching (Grimaldi et
al. 2020).

Action Plan for Spintronic Memory
Table 13. Action Plan for Spintronic Memory

Technology for
Energy Efficiency:

Spintronic memory, specifically MTJs for non-volatile memory

Technology Interest: Memory

Challenges Solution Pathways

. Explore alternative magnetic orders and materials, like
antiferromagnetic and ferrimagnetic, to reduce switching
energy and enhance stability.

. Develop and utilize spin-orbit torque (SOT) and voltage-
. Reduce energy and current requirements for switching MTJs in switched mechanisms for efficient and fast switching.

Spin-Transfer-Torque Random Access Memory (STT-MRAM). e Identify optimal magnetic materials with minimized

. Reduce switching error rates. variability for better switching accuracy.

. Address scaling challenges for spintronic memories in reducing . Explore double-barrier magnetic tunnel junctions and
switching energy and current. voltage-modulated anisotropy or exchange coupling for
efficient switching.

. Investigate system-level changes, including stochastic
MTJ operation for energy efficiency, and MTJ use in
compute-in-memory systems.

Major Tasks/Milestones Metrics Targets Timeline (years)

Switching error reduction Switching error 1in 108 5-10

Energy to switch

o 100 aJ/switch 5-10
magnetization

Energy efficiency improvement
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Current to switch

Switching current reduction magnetization

100 pA or less 5-10

Stakeholders and Potential Roles in Project

Stakeholder Role

Product Manufacturers/Suppliers | e Fund academia and start-ups.

End Users/OEMs . Develop capabilities for manufacturing scaled devices.

. Simulate and demonstrate materials and devices.

Academia . Test materials and devices (includes materials growth, device fabrication, and testing over
millions of cycles).

Required Resources ‘ Cross Collaboration Needs of Working Groups

. Facilitation of international collaborations while protecting US
IP or sharing IP equitably.

e  Fabrication, characterization, and testing capabilities. e Circuits and Architectures: Develop novel approach to
e Amortizing design and R&D, including industry scale fabrication integrate with CMOS.
equipment, in critical areas. e Metrology and Benchmarking: Measure materials.

. Supplements to academia to upgrade current infrastructures.

. Test bed development.

2.1.4 Ferroelectric Memory/Ferroelectric Field-Effect Transistors

Ferroelectric materials are nonvolatile, exhibiting spontaneous polarization of discrete, stable, or
metastable states without an applied electric field. In ferroelectric materials, it is possible to
switch between polarization states using an electric field, forming the basis of ferroelectric
memory devices (Rabe et al. 2007). The field where the polarization switches to the opposite
state is known as the coercive field. Over the past couple of decades, ferroelectric memories
have been intensely studied as a replacement or supplement to existing memory technologies.
Compared with other non-volatile alternative memory technologies, such as phase change
memory and resistive memory, ferroelectric memories require lower write energy, making them
more attractive as a more energy efficient competitive memory technology (Hwang and
Mikolajick 2019).

Ferroelectric field-effect transistors (FEFETSs), which incorporate a ferroelectric oxide or organic
ferroelectric between the channel and gate electrode, utilize the permanent polarization of the
ferroelectric material to enable memory capabilities. Compared with perovskite-based FRAM,
hafnia FeFETs provide numerous advantages, including nondestructive read, fast switching,
scalability, high coercive field, and CMOS compatibility. Hafnia FeFETs have also achieved the
smallest physical gate lengths of reported FeFETs (Mueller, Slesazeck, and Mikolajick 2019).
This advancement in FeFET technology is pivotal as it contributes significantly to the
development of more energy-efficient computing systems.

Ferroelectricity has also been observed or predicted in other materials as possible alternatives
to hafnia-based and organic ferroelectrics. These include films made of wurtzite-structured
materials and 2D van der Waals materials (Liu et al. 2021; Blinov et al. 2000; H. Wang et al.
2018; Si et al. 2018; Guan et al. 2020). Table 14 provides a comparison of hafnia-based
FeFETs with incumbent technology. While state-of the-art (22-nm node), hafnia-based FeFETs
do not provide improvement in the write energy per bit, compared to embedded SRAM at the 7-
nanometer node, SRAM is volatile, lacks multibit operation, and has high standby power. This
leads to performance degradation in energy consumption at the system level when standby is
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frequent, such as in applications at the edge. By contrast, hafnia-based FeFETs have low
standby power, multibit operation potential, and much smaller cell size (10-30 F?) enabling
monolithic 3D integration of FeFETs in the back-end-of-line (BEOL) for compute-in-memory
architecture, with significant area, energy, and latency benefits. With this configuration, Dutta
demonstrated 3 times’ improvement in energy efficiency (TOPS/W) of a 3D monolithically
integrated 22 nm BEOL FeFET (2 bit per cell) compared against 7-nm SRAM (Dutta et al.
2020), with potential up to 10 times’ improvement with a 4-bit cell. Moreover, for storage
applications, FeFETs can provide up to 1,000 times benefits in energy performance compared
with Flash (SONQOS).

Table 14. Energy Impact and Timeline Estimates® for FeFETs

Commercial

Expected Commercial Energy Impact Timeline for
LGl Performance BePnr c;f;r:l;rk Benchmark Factor TRL 6
eSRAM 1 fJ/bit 1 10 years
FeFET 1 fJ/bit
eFlash .
(SONOS) 1,000 fJ/bit 1,000 10 years

@ Source: Khan, Keshavarzi, and Datta 2020

More recently, ferroelectric tunnel junctions (FTJ) have been studied as a more energy efficient
emerging memory technology. As seen in Figure 21, FTJ is an ultra-thin ferroelectric film
sandwiched between asymmetric electrodes or interfaces. Polarization states are determined by
non-volatile modulation of the barrier height. The ferroelectric dipole orientation ultimately
determines the high or low resistance state and can be read non-destructively. To date,
research activity has largely been only in academic settings, on perovskite-based ferroelectrics,
and on single devices. More work is needed to better understand the ferroelectric/metal
interfacial properties, deviations between experimental data and modeled behavior, scalability,
CMOS compatibility and the potential for hafnia-oxide-based ferroelectrics for the tunnel junction
(IRDS 2021; Garcia and Bibes 2014). The potential for organic ferroelectrics gating a narrow
channel transistor also requires further study (Xia and Hu 2022; Kang et al. 2019; Zheng et al.

2009).
FeRAM (1T1C) FeFET (1T) FTJ(1R)
Ferroelectric Random-Access Memy Ferroelectric Field Effetlransistor Ferroelectric Tunnel Junction
“DRAM-lke” “FLASH-ke” “Diode-like”
PL WL WL
- 4=
WL SL L h (I\
.E‘.;_. ....EE S S
BL Low barrier height High barrier height
BL
"swithing"l—» ' % Low R
g ithing l § g
= “non-swithing” f| — = )
3 ! % | Lowv/ Hgny 3 High R
a
Time Gate Voltage Voltage

« Commercialized for > 20 years -+ Intensive R&D by Semiconductor Industry * Academic R&D
» Destructive read » Nondestructive read, multiple bits « Asymmetric free carrier
» High endurance >10%® « High endurance challenging screening lengths

Figure 21. Operating principles of ferroelectric memory. Source: Mikolajick et al. 2021
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The working group deliberations primarily focused on FeFETs as a promising energy-efficient
memory technology; the sections below, therefore, only pertain to the challenges, solution
pathways, and action planning for FeFETs.

Applications in Neuromorphic Computing

The switchable electrical polarization in ferroelectric materials allows them to mimic the synaptic
weights inherent to brain function. This polarization arises from the formation of stable electric
dipoles within their non-centrosymmetric crystal structures. The capacity for controlled and
incremental switching in ferroelectric materials makes them prime candidates for neuromorphic
architectures, potentially enabling energy-efficient and high-density computational paradigms.

Key challenges include: achieving uniform polarization behavior at the nanoscale, especially in
devices less than 100nm in size; extending lifetime, particularly in silicon-based FaFET devices
given their limited cycling endurance (Christensen et al. 2022); and optimizing the current
density and reading speed in ferroelectric tunneling junctions (FTJ), which is complex and often
influenced by the thickness of the ferroelectric layer and the intricacies of multi-layer stacks
(Slesazeck and Mikolajick 2019).

Addressing these challenges requires a combination of material science innovations and a
deeper understanding of their intrinsic properties. Potential solutions include the stabilization of
specific ferroelectric phases in crystallized thin films, introducing dopants, and epitaxial growth
of monocrystalline layers. In the context of FTJs, understanding domain wall motion might lead
to more refined and analog switching behaviors. Additionally, the exploration of newer materials,
with combined ferroelectric and piezoelectric properties, can further expand the horizon for
neuromorphic applications.

Challenges and Solution Pathways for Ferroelectic Memory/FeFETs
Device Characteristics: Endurance, Retention, and Write Voltage

Compared with SRAM and DRAM, FeFETs have the advantage of being non-volatile, smaller in
cell size, and more energy efficient in standby power. Compared to Flash, FeFETs have
superior cycling and the potential for deeper scaling. For example, Hafnia-based FeFETs have
been demonstrated at the 22nm node for silicon-on-insulator (SOI) (Khan et al. 2020; Dunkel et
al. 2017). However, reliability challenges, related to endurance and retention, are the major
barriers yet to be addressed.

FeFETs are becoming an advantageous alternative to existing memory technologies due to
their compact size and energy efficiency. Recent studies have demonstrated Si-channel, hafnia-
based FeFETs with 10°%-10° cycles for deterministic switching, which (while better than Flash)
does not compare to SRAM (>10"6). Reduced cycling can be attributed to the degradation of the
ferroelectric and interfacial layers (notably, the interfacial layer (IL) formed between the
ferroelectric (FE) and the Si channel). In hafnia-based FeFETs with Si channels, the
mechanisms of charge trapping and trap generation at interfaces (FE-IL and IL-Si) are
particularly important. Charge trapping and de-trapping play a crucial role in defining the read
speed, particularly influencing the read-after-write latency. This inferior switching speed to
conventional SRAM is primarily due to the slow kinetics involved in neutralizing charged
interfacial states. These states act as a screen, effectively masking the polarization inherent to
the ferroelectric material, thereby impacting the overall speed and efficiency of the reading
process (Wang et al. 2021). Compounding this issue, retention and endurance can be inversely
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related, depending on the operation mechanism, such that strategies to improve one can
degrade the other.

Write voltage is another FeFET characteristic that must be addressed to be a truly competitive
technology. Although oxide channel FeFETs have achieved 1.6V (Dutta et al. 2022), at present,
typical FeFET write voltage is <4V, compared with <1V for both SRAM and DRAM. At these
voltages, FeFET is not compatible for logic. Write voltage is ultimately dependent on coercive
voltage (the voltage to switch a polarization state) of the ferroelectric layer. Thus, endurance,
retention, and write voltage are intrinsically tied through the materials and material combinations
of the channel and gate stack.

High mobility and disorder-tolerant oxide semiconductor channel materials integrated with ultra-
thin (e.g., sub-5nm) ferroelectric layers may improve endurance and lower write voltage.
Previous studies have shown promise for n-type tungsten oxide and indium tin oxide (Dutta et
al. 2022), but p-type oxide channel is severely lacking. R&D solutions are needed for p-type
oxide channel materials (for CMOS) that exhibit good stability and electrical performance.
Furthermore, defect-enhanced leakage current and/or threshold voltage instability are major
challenges that also need to be addressed through R&D. Gating a two-dimensional electron gas
with a ferroelectric may also be worthwhile due to higher channel mobilities and increased on/off
ratios.

Atomic layer deposition (ALD) research--both modeling and experimental approaches—was
proposed as a possible pathway towards fabrication of FeFETs with ultra-thin hafnia-based
ferroelectric layers for CMOS-compatible logic voltages with good endurance and retention
properties. Film growth by ALD is also highly desired for process integration in advanced CMOS
nodes. Density functional theory (DFT) can be leveraged to identify chemical pathways and
growth mechanisms to better understand the structure and characteristics of films and
interfaces and design better stacks and processes. Experiments could then test and validate
these approaches. Plasma-enhanced ALD was noted as a potential solution for BEOL
integration of hafnia-based FeFETs because it lowers post-deposition annealing requirements,
changes the phase transformation sequence of the ferroelectric, and controls heterogeneity in
dopant and defect concentrations, among other factors (Yu et al. 2022).

Working group members also proposed adopting a more practical, results-oriented strategy: a
complete full understanding of the underlying principles governing device function might not be
essential, but exploring pathways that show improved and promising results could still drive
ongoing R&D. Ultimately, to overcome issues related to the endurance-retention trade-off and
the write voltage, it is crucial to develop optimized stack designs and materials. Whether these
advancements come from theoretical or empirical research, potential optimized solutions might
involve tailored polarization hysteresis, reduced trap density, or innovative stack architectures.

Materials-Related Challenges

Throughout working group deliberations, several materials-related challenges emerged, listed
below:

o Control/selection of the desired phase of a ferroelectric material during device
processing and field cycling.

o BEOL-compatible transistors to support monolithic 3D integration.
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e Contact between channel material and ferroelectric (FeFET).
o Contact between metal electrode and ferroelectric material.
o CMOS-compatible ferroelectric materials.

o Leakage at ferroelectric domain walls.

Challenges associated with controlling and selecting the desired phase of the ferroelectric
material are related to those of BEOL-compatible transistors. To enable monolithic 3D
integration, FeFET process flow temperatures must be kept below 400°C (for those using
conventional rapid thermal annealing), mitigating any deleterious effects on FEOL transistors
and structures. Above this temperature, electro-migration, damage to underlying dielectric
materials, and changes in dopant profiles become a concern. While the deposition temperature
of the ferroelectric material commonly deposited by ALD for hafnia-oxide based ferroelectrics is
below this limit, subsequent annealing to achieve the desired phase for ferroelectricity via
crystallization—typically through wafer-scale rapid thermal annealing— is above 400°C. Any
further processing after this phase has been established must be below the annealing
temperature so the ferroelectric material retains its characteristics and does not revert to a more
stable phase.

New approaches (e.g., new materials, localized annealing, and/or dopants) are needed to
address these challenges. A Stanford-SLAC project is developing a holistic BEOL-compatible,
ML-guided process integration approach to control the HfO,-ZrO, (HZO) ferroelectric phase at
temperatures compatible with CMOS-BEOL integration. This approach includes a novel, non-
equilibrium flash annealer; electrical characterization (e.g., endurance and fatigue) and
structural characterization (e.g., using XRD and TEM); real-time x-ray synchrotron
measurements of behavior; and ML-assisted process exploration (Karigerasi et al. 2022; Biswas
et al. 2021). Significant attention is being given to organic ferroelectric memory as well (Asadi
2010) since it is considered to be very scalable (Blinov et al. 2000).

Contact between channel and ferroelectric, and between metal and ferroelectric, may be
addressed through fundamental interfacial studies and experimental approaches. Modeling and
characterization can provide fundamental understanding of interfacial phenomena and structural
information to inform and guide experimental approaches. Experimental approaches can include
co-optimizing gate electrode material and ALD growth conditions, as well as novel post-
processing techniques (e.g., localized annealing) to reach the desired characteristics.

Before the discovery of hafnia-based and organic ferroelectrics (Zheng et al. 2009), ferroelectric
materials (primarily PZT-based perovskites) were not CMOS-compatible. As noted in the
introduction to this chapter, given the existing CMOS infrastructure, any viable future solution for
ferroelectric-based devices must be CMOS-compatible.

Leakage at domain walls, caused by structural defects in the material, may lead to performance
and efficiency degradation in oxide ferroelectric devices. For example, it is thought that these
play a role in wake-up phenomenon, fatigue, and delay. However, because of the complexity of
the ferroelectric material systems, including meta-stable phases and the transformation between
these phases under external field, this is an area of intense research with many open questions
as to its true effects on ferroelectric device performance (Saini et al. 2023; Stolichnov et al.
2018; S. Zhang et al. 2023; Lee et al. 2020).
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Action Plan for Ferroelectric Memory/FeFETs

Table 15. Action Plan for Ferroelectric Memory/FeFETs.

Technology for
Energy Efficiency:

FeFET

Technology of Interest:

Memory

Challenges

. Overcome volatility and multi-state storage limitations in 3D
integrated non-volatile memory systems.

. Achieve high density and low switching energy while ensuring

CMOS logic voltage compatibility.

. Enhance endurance and power efficiency for deeply scaled

memory technologies.

. Address retention and rad-hard issues of 3D monolithic

integration.

Major Tasks/Milestones

Enhance the interface between
ferroelectric materials and
channel for durable cycle life.

Metrics

Electric field cycling

Solution Pathways

Develop high-mobility, disorder-tolerant oxide
semiconductors with thin ferroelectric layers for improved

endurance.

Innovate ALD deposition techniques and materials, like
HfO2-based ferroelectrics, for better scalability and

stability.

Optimize thermal processing through advanced

crystallization techniques.

Focus on R&D for process-property relationships to fine-
tune ferroelectric capacitors and FeFETs for deep scaling.

Targets

10" to 10" cycles

Timeline (years)

5 years for initial
improvements,
5-10 years for

advanced targets

Innovate materials and design

5-10 years, with

for lower write voltages and Required voltage for reliable current
) - e 1.2V and 0.7V
improved channel material switching technology at
stability. 1.5V
Develop solutions for reducing Enerav consumed per bit
write energy in ferroelectric gy cor p Less than 1 fJ/bit 5-10
. during write operations
devices.
Advance deposition methods Structural and electrical
and optimize thermal processing properties of ferroelectric 5-10
for FeFET integration. transistors
2-5 for
Electrical performance --Subthreshold swing of subthreshold
Improve the electrical aramgters like 65-70 mV/decade swing
characteristics of ferroelectric P --Carrier mobility to n-type 50 cm?/V's 5 for n-type

devices for efficient operation.

Stakeholders and Potential Roles in Project

Stakeholder

transconductance and Hall
measurements

at Vit stress + 1.2V
--Reduce hysteresis to below 20 mV

Role

10 for p-type
2-5 for reduction
hysteresis

Product Manufacturers/Suppliers

Provide advanced materials and devices structures for testing.

Utilize extensive contact with industry partners.

Innovate metrology tools specific for ferroelectric memory.

End Users/OEMs . Define performance requirements and validation protocols.
) Collaborate on testbeds for ferroelectric memory applications.
. Develop new materials.
Academia . Research into new characterization methods for ferroelectric materials.

Develop Al/ML techniques for predictive metrology.
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Required Resources ‘ Cross Collaboration Needs of Working Groups

. APHI: Focus on 3D device structure to integrate
ferroelectric memory.

. Circuits and Architectures: Develop new computing

e Access to advanced metrology equipment and facilities. paradigms to ensure compatibility with next-gen computer

e Funding for long-term research and development. near memory architectures and neurocomputing chips.

. Collaboration platforms between industry, academia, and . Algorithms and Software: Facilitate configurable hardware
national labs. for efficient algorithm mapping, maximizing the energy

efficiency gains in computational applications.

. MEES: Adopt low-temperature synthesis techniques like
flash lamp annealing to enhance fabrication process.

2.1.5 Tunnel Field-Effect Transistors
Subthreshold Slope Sharpening Transistor Technologies
A major impetus for exploring Beyond-

CMOS technologies such as alternative 4

switching methods (e.g., quantum 60 mV/decade
tunnelling) is their potential to achieve an

order of magnitude (~10x) increase in

energy efficiency by steepening the

subthreshold slope that defines the

transition between the transistor’s off and I
on states. In a MOSFET, the subthreshold

swing (SS), the inverse of the subthreshold / 20 mV/

slope, is usually limited to 60 mV/decade ','

at room temperature (see Figure 22). This '.’ decade
limitation is often referred to as the - h4 >

Boltzmann tyranny (Pananakakis et al.
2023). V

At the same current, steepening the slope Figure 22. Subthreshold Slope of I/V on/off curve for
of IV curve for on/offreduces the o oo v
switching voltage. Additionally, because

the power used by the transistor is proportional to the square of the voltage, reducing voltage is
a powerful energy efficiency lever (e.g., reducing voltage by a factor of 3 reduces the power by
9 times). However, during the roadmap process, it became clear that Beyond-CMOS switching
technologies were not the only way to sharpen the subthreshold slope. For example, since this
limit is related to thermal excitation of electrons in the MOSFET at room temperature, the 60
mV/decade limit also can be overcome in conventional CMOS by running the transistor at
cryogenic temperatures (Sédergren et al. 2023). Some academic research further shows that
ultrathin dielectrics and ultrathin devices in general may enable better control of mobile charge
and current, thus also steepening the slope (Cristoloveanu and Ghibaudo 2022).

TFET

Tunnel field-effect transistors (TFETs) are a promising alternative to traditional MOSFETSs for
continuing to decrease the voltage of operation, thus improving energy efficiency (Seabaugh
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and Zhang 2010). In recent years, TFET has advanced rapidly as scientists focus on optimizing
their performance and overcoming existing limitations. Most notably, the breakthrough to
achieve steeper subthreshold slopes and lower operating voltages came from successful
integration of novel materials, such as 2D materials and heterojunctions (Kanungo et al. 2022).

Compared with MOSFETSs, TFETSs rely on a fundamentally different mechanism for carrier
transport: MOSFETSs switch by modulating thermionic emission over a barrier, where thermal
excitation of carriers limits the steepness of the turn-on current. TFETSs, on the other hand,
switch by modulating quantum tunneling through a barrier. Tunneling is enabled by the overlap
of electron-like and hole-like wavefunctions through an energy barrier. The successful
transmission through the energy barrier is dependent on the mass of the particle, the thickness
of the barrier, and relative energy levels. Notably, this process is independent of thermal
excitation, allowing TFETSs to operate with much steeper turn-on, which, in turn, enables lower
operating voltages than MOSFETs and significant energy savings.

n Channel p Drain

V0 p SOUL/_
Gate 3

44 O toe

Potential modulation by gate field

Gate MOSFET

p Source i Channel n Drain

Electron

Tunnel transport

Potential modulation
by gate field

Tunnel FET
(@) (b)

Figure 23. Device operation of a tunnel field-effect transistor (TFET). (a) the schematic of a TFET cross section
and band diagram along the channel in on and off states and (b) comparison between TEFET and MOSFET
operation principle. Source: Agha et al. 2021

For conventional silicon FETSs, subthreshold slope is fundamentally limited by thermal energy
fluctuations and is fixed at 60 mV/decade. Conversely, because carrier transport in TFETs is
ultimately dependent on its wavefunction and not constrained by thermal energy, TFETs can
theoretically achieve significant improvements, with variables like band mass and defect density
limiting the subthreshold slope (Lu and Seabaugh 2014). Taking a modestly aggressive
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subthreshold slope of 20 mV/decade, this translates to roughly 10 times improvement in power
consumption and energy efficiency compared with conventional FETs (IRDS 2020).

Table 16. Energy Impact and Timeline Estimates? for TFETs

Expected e Commercial Energy Impact Timeline for

Performance DA Benchmark
Product

Technology

TFET 0.5 fJ/bit 5nm Si FinFET 7.02 fJ/bit 14 5 years

a Source: Huang et al. 2017

However, several challenges must be addressed for TFETs to achieve their theoretical
performance and be a viable alternative to incumbent technology. These challenges can be
grouped into two categories: device performance and manufacturability. The same band-to-
band tunneling (BTBT) mechanism that enables TFETs to have 10 times improvement in energy
efficiency introduces low ON-state current. And the fabrication of high-performance devices has,
thus far, relied on unconventional means, with conventional manufacturing methods having
yielded only poor-performance devices, which highlights the challenges of developing a process
suitable for conventional CMOS processes and equipment.

To date, there have been limited successful demonstrations of TFETs that meet targets for
on/off ratio, on-state current, and threshold voltage. Innovations in materials (Nazir, Rehman,
and Park 2020), device structure, and manufacturing approaches are needed for TFETSs to truly
be a viable alternative.

Challenges and Solution Pathways for Tunnel Field-Effect Transistors
Low On-State Current

Since transistor speed is determined by current density, TFETs must have comparable current
to MOSFETs while continuing to maintain a steep subthreshold slope to be a competitive
alternative technology. To enhance the on-state current in TFETS, various techniques have
been proposed, including gate and spacer engineering, band engineering, and innovative TFET
structures. Examples of innovative TFET structures include vertical TFET, stacked gate
junction-less TFET, and SOI-TFET with interface trap charges (Choi and Lee 2010; Eyvazi and
Karami 2020; Rahi, Asthana, and Gupta 2017; Mitra and Bhowmick 2019; Kao et al. 2012).

Traditional approaches to enhancing the on-state current have focused on improved
electrostatic design and band engineering in a traditional transistor geometry. Gate engineering
approaches enhance on-state current by leveraging a multi-metal gate to improve electrostatic
control over the tunneling interface. This approach effectively changes the work function along
the channel length and modulates the distance between the conduction band of the channel and
the valence band of the source (Nigam, Kondekar, and Sharma 2016; Kumar et al. 2020). By
comparison, spacer engineering entails separation of the gate terminal from the drain and
source regions using spacers. Coupled with high-K value, spacers reduce channel resistance,
thereby improving on-state current. Band engineering, through heterostructure and material
design, can be used from the energetics to the carrier masses to manipulate the quantum
mechanical variables underlying band-to-band tunneling.
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While these approaches can improve on-state current for traditional horizontal TFETSs, they will
always have less current than MOSFETSs of the same geometry. Conventional MOSFETSs have
an uninterrupted channel where charge carries flow between source and drain. TFETSs, on the
other hand, rely on tunneling through a barrier, across an interrupted channel and, therefore, will
always sustain less current given other operating constraints (e.g., off-state current).

Some recent research focuses on vertical geometry that enables many parallel tunneling
channels across the gate length, increasing the total current of the device. These device
structures universally rely on tunneling between a buried layer of charge and a gated surface
layer, so the

tunneling region is ! 60 mvidecade

not only the width - B
of the channel but ﬁ &

also the length of ¢
the gate, effectively
doubling the

Standard manufacturing >60 mV/decade
relevant

-l ¢
dlmens|0na||ty Precision in standard

non-APAM manufacturin
(Revelant et al. ’
2014). This APAM 20 mV/decade

%,

7/,

§
5 Hard limit not reached —
9 Has been >60 mV/decade
Ny N N
& Die to lack of manufacturing
N

=
S
geometry ‘ S

introduces /

requirements for
even stronger

_g Figure 24. Enhanced ON current and subthreshold slope with atomically precise
electrostatic control advanced manufacturing (APAM). Source: Kaarsberg, Misra, and Shimizu 2023

by leveraging

quantum confinement to define the buried layer, such as with a stack of 2D materials (Kanungo
et al. 2022). An alternative approach is being explored in a Sandia National Laboratories project
that couples atomically precise manufacturing techniques with a vertical TFET design to
simultaneously improve subthreshold slope and device current. An atomically abrupt 2D layer of
dopants is created at the surface of silicon to define the source contract using a process called
atomically precise advanced manufacturing (APAM). The source is then buried in intrinsic
silicon to define the channel and a gated drain layer is created over it.

\

Subthreshold Slope

Though TFETs can theoretically achieve subthreshold slopes that exceed Si MOSFETSs, this
has been hard to achieve in practice (Avci, Morris, and Young 2015), primarily due to limitations
in standard manufacturing. Using conventional manufacturing techniques, the doping profile of
the source is diffused, due to diffusion during activation. This diffuse dopant profile essentially
produces an overlapping sequence of turn-on currents corresponding to different dopant
densities. The first of these may have a very steep subthreshold slope but supports very little
current. Those later in the sequence may support significant current but have a subthreshold
slope that is masked by the earlier curves. These sequences combine to produce a poor
subthreshold slope that can be much worse than the thermal limit for MOSFETSs.
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Alternatively, processes like band-to-trap tunneling compete with band-to-band tunneling and
can also produce overlapping turn-on curves that deteriorate the subthreshold slope or produce
unacceptably high off-state current. Understanding the role of defects in TFETSs is a significant
area of need, starting with the metrology required to monitor their creation and evolution in
fabrication.

APAM, as previously noted, can fabricate abrupt doping profiles to mitigate this issue. Layered
heterostructures of 2D materials take an alternative route to providing abrupt charge profiles.
However, other solution pathways are needed and may again rely on numerous engineering
approaches to the gate, source, and dielectric regions.

Manufacturability

Manufacturability is also becoming an issue central to TFET development, such as wafer-scale
uniformity of tunnel junction formation. Device-to-device variations across the wafer will result in
variations in electrical characteristics, including subthreshold slope and ON-state current,
resulting in poor yield, unexpected device performance, and challenges with circuit design.
Modeling and experimental validation can mitigate some of these issues and will be especially
important for transitioning to high-volume manufacturing. Extensive measurements from actual
devices can help develop, feed into, and refine process and device models. A key area of need
is the development of tunnel junction-specific metrology so that processes can be refined and
monitored.

In other situations, a needed tool or process may not yet exist. Taking APAM as an example,
transitioning this process to high-volume manufacturing will require the development of a tool
that can accomplish the surface cleaning, doping, and silicon capping at high throughput and
wafer scale. Development of a tool to support APAM TFET with unknown commercialization
prospects is a hard sell. However, identifying more near-term applications can jumpstart
engagement with tool developers.

While incumbent manufacturing approaches have yielded poor-performance devices,
manufacturing/fabrication innovations, like APAM and other previously discussed engineering
approaches seek to overcome these limitations. However, the best performing devices still
require the incorporation of the many innovations made in high-volume manufacturing with
these new techniques. Thus, a significant milestone is that these new techniques be
manufacturable at the wafer scale and compatible with existing infrastructure, or they will
ultimately become dead ends.

To date, there is no clear winner in the TFET process flow (e.g., materials, structures), so the
process requirements to establish a fab process are not yet known. Efforts up to now have
primarily focused on improving device performance at the lab scale, but practical factors like
manufacturability, lab-to-fab transition, and process development/integration now need to be
considered.
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Action Plan for TFETs

Table 17. Action Plan for TFETs

Technology for
Energy Efficiency:

TFET

Technology of Interest:

. Increase ON-state current.

manufacturing processes.

Major Tasks/Milestones

Validation of device model for

Logic

Challenges

. Achieve competitive subthreshold slope (<60 mV/dec).

. Develop processes that are compatible with existing CMOS

Metrics

Material parameters

Solution Pathways

Explore engineering approaches (e.g., gate and spacer
engineering), and structural modifications (e.g., vertical
TFET), to improve electrostatic control and ON-state

current.

Leverage new techniques (e.g., atomically precise
advanced manufacturing) for abrupt dopant profiles to

reduce subthreshold slope.

Achieve wafer-scale uniformity in tunnel junction
formation for consistent device performance.

Targets

validation of both modeling and

Timeline (years)

memory

Stakeholder

CMOS SRAM

Stakeholders and Potential Roles in Project

Role

TFETs experimental
Control junction a_b_rupt_ne_ss and eV/nm >0.1 2.3
doping densities limits
High ON current: pA/um >100 4
Establish good DC device Low OFF current: nA/um <1 4
metrics
Low SS slope: mV/decade <20 4
Establish good high speed circuit Operating voltage & speed: <0.3. <100 6
metrics V, ps -
Assess scalability of TFETs Area <50 nm? 6
Feasibility of TFET-based Equal state retention to retention rate matching CMOS SRAM 6

Product Manufacturers/Suppliers

. Develop TFET-specific fabrication tools and processes.

End Users/OEMs

) Integrate TFETs into low-power devices and systems.

Academia

. Engage in fundamental research on TFET materials, interfaces, and device physics.

Required Resources

. Device models validated by experiments.
. Combine novel techniques with cutting edge fab tools.

. Engagement between academia/national labs and industry.

Cross Collaboration Needs of Working Groups

systems.

techniques to TFETs.

Materials and Devices: Develop novel TFET materials.

Circuits and Architectures: Integrate TFETs into existing

Metrology and Benchmarking: Tailor measurement

2.1.6 Silicon Gate-All-Around Transistors

Gate-all-around (GAA) transistors build on the successes of classical, two-dimensional planar
transistors, as well as the more recently dominant fin field-effect transistors (FInFETs). Whereas
planar designs had the transistor’s gate positioned along one side of the channel it modulates,
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and FinFETs improved upon this approach by wrapping around a raised fin-like channel on
three sides, GAA transistors exhibit gate designs that fully wrap around the device’s channels. A
general schematic of all three transistor types is presented in Figure 25 to show the different
relationships between their respective gates and channels.
Planar FinFET Gate-All-Around
Gate\ Gate\

/ Drain

Source

Figure 25. Typical source, drain, and gate arrangements for planar, FinFET, and GAA transistors. Source:
Semiconductor Engineering 2023

While specific design details of GAA transistors can differ somewhat by manufacturer, designs
generally involve silicon nanosheets or nanowires stacked vertically and passing through a high-
k metal gate, such that the gate surrounds these small channels on all sides. These stacked
nanosheets/wires are formed through alternating layers of epitaxially grown silicon (Si) and
SiGe, with the latter layers containing only small concentrations of germanium. These
interspersed SiGe layers are then selectively etched away later in the fabrication process and
replaced by the transistor’s high-k dielectric metal gate (Mukesh and Zhang 2022). The
thicknesses and widths of these layers of Si and SiGe can be carefully controlled, allowing
manufacturers to vary their designs to optimize for properties such as higher drive current (using
wider nanosheets) or more energy-efficient power consumption (using narrower nanosheets)
(Hofman 2022). Multiple stacked nanosheets/wires must be implemented within a GAA
transistor’s design to gain performance advantages over current FinFET designs, and some of
the challenges that result from trying to create these very precise stacks are discussed further
below.

However, the all-around design of these gates in GAA transistors can afford significant benefits
and scaling advantages relative to current FinFET designs. GAAs are in the process of
superseding FinFETs as the dominant technology for high-performance logic, offering benefits
such as modest improvement in switching energy (Huang et al. 2017; Barraud et al. 2017)
(Table 18), faster switching speeds, lower current/power usage, greater transistor density, and
reduced channel leakage (Alcorn 2023). The channel thicknesses created in FinFETs are
defined (and, in turn, limited) by lithographic resolution, while the gate structure of GAA designs
affords greater control over the channel and more opportunities for channel length scaling—and
thus greater potential transistor density (Singh 2021), allowing for continued dimensional
improvements. GAA transistors can also be manufactured at an acceptable price point for
chipmakers, such that they are expected to see wide-ranging application in—among other
applications--Al systems, gaming, graphics, medical and automotive technologies, and
advanced 5G networks.
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Table 18. Energy Impact and Timeline Estimates? for Si-GAA

Expected EelluCls Commercial Energy Impact Timeline for

Performance R Benchmark Factor TRL 6
Product

Technology

5nm Si-GAA 6.94 fJ/bit 5nm Si FinFET 7.02 fJ/bit 1.1 Current

@ Source: Huang et al. 2017

While FinFETs have played a leading role in high-performance logic through the 2010s up to the
present day, there are limits as to how tall the fins can be and how many can be placed next to
one another without negative electrical effects (Hofman 2022). For example, 3nm FinFETs have
been fabricated, but there are prohibitive issues with current leakage and short-channel effects
as FinFET devices get progressively smaller while attempting to continue the dimensional
scaling of Moore’s law (Singh 2021).

Moving from FinFETSs’ fin-based design to stacked, fully surrounded nanosheets has been done
to help mitigate these electrical effects, and GAA technologies have been in development for
decades. Toshiba demonstrated the first GAA transistor back in 1988, called the Surrounding
Gate Transistor, and IBM has been working on their GAA devices and the accompanying
nanosheet technology for over a decade (Singh 2021). But the first significant performance
benchmarking of GAA transistors has come out in the past five years (Mukesh and Zhang
2022).

The latest International Roadmap for Devices and Systems (IRDS™) confirmed IEEE’s earlier
prediction that FinFETs would gradually be usurped by GAA devices in high-performance logic,
with a transition beginning around 2022 and expected to be fully realized in 2025 (IRDS 2022).
Samsung began 3nm chip production using their Multi-Bridge-Channel FET (MBCFET™) GAA
technology around mid-2022 (Samsung Semiconductor 2022). A recent IMEC roadmap for
transistors projects a transition timeline like that of IEEE’s IRDS, expecting higher-volume GAA
production from Samsung and Intel in 2024, followed by TSMC’s GAA production in 2025
(Alcorn 2023).

Both the IRDS and IMEC roadmaps expect GAA transistors to be a crucial component of at
least the next few generations of logic. Other technologies with potential to play a role further
down the line include complementary FET (CFET) transistors (Alcorn 2023), vertical-transport
FETs, and stacked transistors (Mukesh and Zhang 2022). And though the default channel
material in GAA devices is silicon, there are other semiconductive materials under review that
could eventually play a role within GAA transistors and/or other transistor technologies.
Examples of other semiconductive materials under consideration include INnGAAs and other IlI-V
semiconductors (Semiconductor Engineering 2023), molybdenum disulfide, graphene, and
indium oxide (Mukesh and Zhang 2022).

Challenges and Solution Pathways for Si-GAA

Since Si-GAA was identified as a promising energy-efficient technology, the discussion below is
primarily based on a review of existing work due to the high motivation and intensive R&D
already occurring in industry.
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Many of the pathways for development of GAA transistors have been relatively well-established
from preceding FinFET designs. Common components between GAAs and FinFETs include the
shallow trench isolation, high-k metal gate, source/drain epitaxial elements (Mukesh and Zhang
2022), and pillar patterning. Initial fabrication of GAA'’s alternating Si and SiGe
nanosheets/nanowires is considered generally straightforward. For the SiGe layers, decreasing
concentrations of germanium helps to minimize defects such as lattice distortion, but increasing
concentrations of germanium makes it easier to etch these layers away later in the process and
limit erosion of the purely silicon nanosheets (Semiconductor Engineering 2023). Most current
challenges with GAA technologies stem from this tradeoff in the latter steps in the production
process, such as etching away the SiGe layers from between the Si channels and depositing
the gate’s high-k metal and dielectric materials.

“A Review of the Gate-All-Around Nanosheet FET Process Opportunities” by Sagarika Mukesh
and Jingyun Zhang at IBM Research provides a thorough picture of GAA transistors’ remaining
technological challenges, which are summarized below.

The “fat-fin” effect of GAA nanosheets (known as sub-fin leakage for FinFETS) results from an
increased capacitance in the area below the stacked nanosheets. This effect is generally
mitigated by adding a SiGe layer with a higher concentration of germanium at the bottom of the
stack and then selectively etching it away and replacing it with a full bottom dielectric isolation
layer to minimize channel leakage. The “narrow sheet effect,” in contrast, results from the
thinness of the silicon nanosheets and involves a decreased mobility of electrons/holes due to
combinations of phonon scattering and surface roughness. These narrow sheet effects can
typically be offset by increasing the nanosheet’s width. Similarly, a third challenge—
accommodating multiple threshold voltages, as generally required by industry—results from the
minimal space between these stacked nanosheets that is available to deposit work function
metals. Proposed solutions include alternative etching methods and/or increasing the
nanosheets’ spacing.

Overall, GAA architecture includes various “unique design knobs” that allow for manufacturers
to negotiate these various performance tradeoffs. Processing challenges for these layered
nanosheets were categorized by researchers as either mechanical stability, device variability,
thermal intermixing, or self-heating effects. For self-heating, research into these effects is
ongoing (and includes novel substrates like diamond on silicon), but solutions more appropriate
to high-volume production are still under investigation as the technology proceeds into smaller
and smaller dimensions.

Action Plan for Si-GAA
Table 19. Action Plan for Si-GAA

Technology for

Energy Efficiency: SkGAA
Technology of Interest: Logic
Challenges ‘ Solution Pathways
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e Manage “fatfin” effects to minimize channel leakage. ‘ g;lléiplsger:ggt%\?ern;?cnk:it:g concentration SiGe layers for
. Counter narrow sheet effects impacting electron/hole mobility. . Offset narrow sheet effects by adjusting nanosheet width.
. Accommodate multiple threshold voltages within tight

nanosheet spacings. . Explore alternative etching methods and increasing

nanosheet spacing.
. Address mechanical stability, device variability, thermal

intermixing, and self-heating effects during processing. . Continue research into novel substrates and high-volume

production solutions for thermal management.

Major Tasks/Milestones Metrics Targets Timeline (years)
Trans!tlon to GAA tran8|st<_)rs i X Factor 1.6x improvement over FiInFET Immediate to 5
high-performance logic
Addressing "fat-fin" and *narrow Leakage Minimize channel leakage Immediate to 5

sheet” effects

O IS TSl Multiple threshold voltages within GAA

voltages with tight nanosheet Voltage control desian Immediate to 5
spacings 9
Mitigating self-heating and Thermal management Effective heat dissipation Immediate to 5

thermal management challenges

Integration of GAA transistors Widespread application in Al, medical,
into industry applications and automotive technologies

Stakeholders and Potential Roles in Project

Stakeholder Role

Integration success Immediate to 5

Product Manufacturers/Suppliers | e Develop and optimize GAA transistor manufacturing.

End Users/OEMs . Implement GAA transistors in high-performance logic applications.

Academia . Research options for overcoming physical challenges and device variability.

Required Resources Cross Collaboration Needs of Working Groups

¢ Advanced material synthesis facilities. . APHI, Circuits and Architectures, and Materials and

. High-precision etching and patterning equipment. Devices: Address integration and performance

. . imization.
. Novel substrate materials for thermal management studies. optimizatio

2.1.7 Emerging Devices and Materials for Analog Computing

To bridge the gap between conventional computing and neuromorphic computing, analog
devices emerge as the prime technology choice. Analog devices differ fundamentally from their
digital counterparts in that they process continuous signal values. Unlike digital devices that
encode information into discrete states, typically represented by Os and 1s, analog devices can
handle an infinite range of values and provide a more natural and efficient way of simulating
biological neural networks. They also have the potential to be integrated seamlessly with current
CMOS technology, adding the capability for brain-like computation and storage within a single
unit.

While there are numerous types of analog devices, this discussion will focus on several key
types that have been the subject of extensive deliberation among the working group. These
devices—memristors, organic semiconductors (OSCs), and mixed ion-electron conductors
(MIECs)—are integral to advancing the capabilities of analog circuits within neuromorphic
computing. Memristors, with their ability to remember previous states of electrical resistance,
serve as the cornerstone for creating artificial synapses, thereby enabling the emulation of
synaptic plasticity critical for learning and memory in neuromorphic systems. OSCs contribute to
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the analog device landscape with their flexibility, low cost, and biocompatibility, which are
advantageous for organic neuromorphic circuits that require low-power, flexible computing
substrates. Meanwhile, MIECs offer a dual conduction mechanism that is pivotal for memristive
devices due to their ability to emulate the ionic motion akin to biological synapses, thus adding
another layer of biomimicry to analog neuromorphic devices. These components are integral to
the analog paradigm, each addressing different aspects of the neuromorphic challenge and
collectively moving the field closer to achieving brain-like computational efficiency within a
silicon-based technology framework.

The integration of analog devices in neuromorphic computing is not just a matter of
transplanting existing technology into new applications. It requires a fundamental rethinking of
device architecture and operation to harness the full potential of analog computation. As we
explore these new horizons, the Circuits and Architecture section of the roadmap provides a
more detailed examination of how neuromorphic devices can contribute to system-level energy
savings and the broader implications for higher-level systems and architectures.

Memristor
Silicon-based devices struggle to replicate the complex dynamics of biological processes
efficiently. Two of these challenges are of note: 1)
r/ l// 4 thg number of connections between individual
switching elements: a neuron has thousands of

connections while a transistor only has two, and 2)
storage of data: conventional silicon devices store

é
w \ data separately from logic operations, whereas
Horizont neurons perform both computation and storage

al wires functions (U.S. Department of Energy, Office of
\ertical wires Memristors Energy Efficiency & Renewable Energy 2021). In
Figure 26. Basic schematic of memristors in response to these limitations of silicon-based
crossbar arrays. Source: Yadav et al. 2023 devices, the development of memristive device

represents a pivotal shift towards emulating the

more intricate and energy-efficient functionalities
of the human brain, bridging the gap between traditional computing architectures and the
dynamic capabilities of biological neural networks.

A memrristive device (or memristor) is a two-terminal electronic component that regulates the
flow of electric current in a circuit and remembers the amount of change that has previously
flowed through it (Yang, Strukov, and Stewart 2013). The key property of a memristor is its
ability to retain its resistance state even when power is turned off (non-volatility), which makes it
an attractive device for neuromorphic computing applications (Xiao et al. 2023). In biological
systems, synaptic weights between neurons adjust over time based on activity, a process that
underlies learning and memory. The resistance states can be adjusted to mimic synaptic
weights, and the ability of memristors to change and remember these states can be used to
simulate synaptic plasticity, the strengthening or weakening of synapses based on activity. For
these reasons, memristors, typically in crossbar arrays (see Figure 26), are mainly studied as
an analog device for neuromorphic computing.

Expected performance for memristor devices leveraging novel materials are typically on the
order of 1 fJ/switch or spike (Zhu et al. 2020). Typical silicon-based neuromorphic systems
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utilize FinFET technology in GPUs (see Table 20). While a device-level comparison indicates
only modest energy impact, the true energy-efficiency impact is derived from the neuromorphic
computing architecture that these devices enable. A more complete discussion of neuromorphic
computing is provided in the Circuits and Architectures section.

Table 20. Device-Level Energy Impact and Timeline Estimates? for Analog Devices for Neuromorphic
Computing.

Expected LETIELE E) Commercial Energy Impact Timeline for
Benchmark
Performance Product Benchmark Factor TRL 6

Technology

Analog for

. 1 fJ/bit 5nm Si FinFET 7.02 fJ/bit 7 10 years
Neuromorphic

aSource: Huang et al. 2017

A broad range of materials with different maturity levels have been explored, some of which are
summarized below.

Organic materials

Owing to their ample free volume, organic semiconductors (OSCs) are characterized by their
low switching energies, remarkable tunability, and efficient ion migration. Central to their appeal
for neuromorphic computing is their ability to emulate neuroplasticity at a single unit level, with a
wide range of synaptic switching mechanisms. These mechanisms range from two-terminal
devices employing filament formation and charge trapping to advanced three-terminal systems
such as ion-gated electrochemical transistors (van de Burgt et al. 2017).

However, OSCs for neuromorphic computing face several challenges. Speed optimization
remains a top priority. The intrinsic rate limitations of OSCs, stemming from their slow charge
carrier mobility, result in a longer response time compared to their inorganic counterparts.
Endurance is also a concern due to repetitive conduction. Issues also arise in enhancing device
density, especially given the incompatibilities between OSCs and certain solvents used in
photolithography (Zakhidov et al. 2011). Integrating these organic devices with traditional binary
digital systems presents further hurdles, mainly due to the low degradation temperature
(>150°C) of OSCs, while the traditional nanofabrication process for annealing Cu interconnects
requires ~400°C (Christensen et al. 2022). Environmental factors—such as exposure to
moisture or oxygen—alongside intrinsic electronic stability issues, amplify these challenges
(Keene et al. 2019). A)

By identifying and fine-tuning rate limitation of
organic materials, the speed of these devices
can be improved. To improve device density,
novel fabrication processes have been proposed
that are capable of accurately fabricating OSCs
in vertical architectures (Lenz et al. 2019).
Moreover, refining the crystallinity of OSCs, in
tandem with advanced encapsulation techniques %
(see Figure 27), presents a compelling approach ’
to mitigate stability issues (Keene et al. 2019; Go
et al. 2020).

Capping Glass Slide

DI Water

PEI/PEDOT:PSS Channel
Au Contacts

Figure 27. Novel encapsulation strategy.Source:
Keene et al. 2019
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Mixed ion-electron conductors (MIECs)

Mixed ion-electron conductors (MIECs)—most commonly oxides such as cerium oxide,
amorphous gallium oxide, and lanthanum nickel oxide—are unique materials capable of
simultaneously conducting ions and electrons. This dual conduction mechanism is particularly
useful in memristors. By utilizing the ionic motion within MIECs, memristors can emulate the
gradual strengthening and weakening of synaptic connections (Shenoy et al. 2014).

Challenges include device variability, arising from the inherent inhomogeneities and defects in
MIEC materials, which leads to inconsistent device behavior (Narayanan et al. 2015).
Additionally, the long-term stability and endurance of MIEC-based devices can be compromised
due to repetitive ion movement, which may induce degradation or drift in the device's
performance over time (Burr et al. 2013). Finally, the speed of ionic movement, in comparison to
electron motion, can also limit the device's switching speed, potentially slowing down
computations in neuromorphic circuits.

To address these challenges, dopants or novel MIEC compounds can be used to enhance ion
mobility and reduce undesired defects (Liu and Wang 2020). Device architecture can also be
optimized to mitigate degradation, for instance, by implementing protective barrier layers that
minimize detrimental ion migration (Yoon, Oh, and Park 2022). Additionally, hybrid device
designs, which combine the benefits of MIECs with other materials or mechanisms, provide
pathways to harness the advantages of ionic conduction while offsetting its limitations (Maas et
al. 2020).

Action Plan for Emerging Devices and Materials for Analog Computing

Table 21. Action Plan for Emerging Devices and Materials for Analog Computing

Technology for
Energy Efficiency:

Emerging Devices and Materials for Analog Computing

Technology of Interest: Neuromorphic

Challenges Solution Pathways

. Leverage foundry expertise in memory technologies like
resistive random-access memory (RERAM) for
neuromorphic device development.

*  ldentify and synthesize materials for analog devices compatible | ¢  Create PDKs and leveraging multi-material accelerators

with CMOS processes. for diverse computing applications.
. Reduce power usage to match biological systems' efficiency. ° Advance spiking neural network implementations for real-
e Integrate analog devices for neuromorphic architectures. time learning and adaptability.

. Enhance computational models to closely mirror the
physics of biological systems, such as using carbon
nanotube networks for processing.

Major Tasks/Milestones Metrics Targets Timeline (years)

Neuromorphic functionality Identify memristive materials with
R&D for neuromorphic materials such as multistate memory switching energy < 100 aJ/bit and 3-5

and nonlinear activation. spiking network frequency > GHz

H 10
Commercialization Feasibility Endurance, lifecycle, cost- Achieve >10 c_:ycles and reduce t_he
) . cost to approximately $10/synaptic 3-7
Analysis effectiveness
cycle
Large-Scale Neuromorphic Scalability to simulate a large Implement systems with ~10"" 5-10
System Integration number of neurons synthetic neurons
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Hybrid Integration with Existing Integration efficacy with Develop high-performance devices for

Technologies current tech edge computing under 100 mW 5-10

Integration in systems requiring >10'°
synthetic neurons for advanced 10-15
scientific computation

Stakeholders and Potential Roles in Project

Stakeholder Role

High-Performance Computing Neuromorphic computing at a
(HPC) and Data Center Adoption massive scale

Product Manufacturers/Suppliers | ® Build up new infrastructure for fabrication and define requirements.

. Implement neuromorphic computing solutions, provide feedback.

End Users/OEMs . Develop new deposition, lithography, and metrology equipment.

Academia . Increase R&D efforts on emerging materials.

Required Resources ‘ Cross Collaboration Needs of Working Groups

. Circuits and Architectures: Define material
properties/metrics requirements.

. Collaboration between academia and industry. . Algorithms and Software: Define how close to brain
. inspired computing is required vs more general

¢ Seed funding for startups. distributed computing architecture.
¢ EDA tools. . APHI: Define metrics in thermal heat transfer and develop

. Open-source design tools. material integration methodology.

. Metrology and Benchmarking: define metrics and develop
metrology methods for this technology.

2.1.8 Novel Materials for Silicon Scaling

As contemporary CMOS technology continues to scale beyond 3nm, the parasitic delay and
dissipation from conventional interconnect materials increasingly dominate overall transistor
performance. At the same time, as feature sizes (e.g., trenches, vias) approach the limits of
existing fabrication equipment, issues like electromigration and crosstalk become more
problematic. Thus, there is intense research, and high industry motivation, into identifying novel
materials and process schemes for the integration of contacts in the middle-of-line (MOL)
processes and interconnects and intermetal dielectrics in the backend of line (BEOL) processes.
Not only does this integration offer the prospect of performance enhancement and allow for
smaller device dimensions, but it also offers potential energy efficiency improvements by
reducing resistive loss and capacitive delay.

One of the most pressing challenges is determining which novel materials ensure CMOS
compatibility and seamless integration. Given the extensive array of potential material options,
down-selection is a daunting task. It's a complex problem, primarily because there are no clear
“‘winners” in material choices; the suitability and tradeoffs often vary on a case-by-case basis
depending on specific applications and technological frameworks. The subsequent sections
summarize the challenges and prospective solutions for interlayer dielectrics (ILD),
interconnects, and contacts.

2.1.8.1 Interlayer Dielectric (ILD)

The interlayer dielectric (ILD) is an insulating layer used between interconnect layers in the
BEOL. The primary function of the ILD is to electrically isolate the layers to minimize crosstalk
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and ensure accurate circuit behavior. Additionally, the ILD offers thermal management and
structural support for further processing.

In conventional CMOS devices, ILD primarily consists of silicon dioxide (SiO;) and its
derivatives, such as fluorosilicate glass (FSG) or carbon-doped silicon oxide (CDO). These
materials work well due to their reliable dielectric properties and CMOS compatibility. However,
as device nodes advance and dimensions shrink, these materials are increasingly prone to
breakdown under electric fields. Moreover, these materials’ higher parasitic capacitance
contributes signifiantly to the overall delay time and switching energy. Thus, there is a need for
novel ILD materials with lower dielectric constants (k-values).

Table 22. Important Properties for Materials in Low-k Applications?

Structural Electrical Mechanical Chemical

e Small, closed pores

e Thickness uniformity

¢ No channel
continuity

Low K ¢ High Young’s modulus
Low leakage current High hardness

Low charge trapping Low residual stress

Low dielectric loss High thickness threshold

High breakdown High adhesion strength
resistance

aSource: Hatton et al. 2006
Novel ILD Materials

Low moisture absorption

No metal corrosion

No fluorine/chlorine loss

Etch selectivity

Good chemical/thermal stability

Ideally, ILD materials have very low k-value while also exhibiting the following charateristics:
structural, thermal, and chemical integrity; sufficient hardness; a large band gap for minimal
leakage; and compatibility with existing manufacturing processes. (Ryan et al. 2003). In reality,
the industry transitioned from SiO; to various other materials (Table 23) over the past couple of
decades that were sufficient, but not ideal, including FSG for the 180nm node and SiCOH for
the 120nm and 90nm nodes. At the advanced nodes, the industry is focused on porous organo-
silicon ILDs. Despite its favorable dielectric constant, process integration, as detailed below, is a
major challenge. Further R&D to identify alternative ILD options and process integration
pathways are needed.

Table 23. Dielectric Constants of Various Contemporary Low-k Materials?

Classification Material Fabrication Dielectric Constant (k)
Silicon dioxide Si0, CVD 3.9-4.5
. . Hydrogen-Silsesquioxane (HSSQ) Spin-on 2.9-3.2
Silsesquioxane-based Methyl—Silsesquioxane (MSSQ) Spin-on 2.6-2.8
. FSG CVD 3.2-4.0
Silica-based SiCOH CVD 2.7-33
Porous Porous HSSQ Spin-on 1.7-2.2
Porous MSSQ Spin-on 1.8-2.2
Porous SiCOH Spin-on/CVD 1.5-2.5
Air gaps Air — 1.0

aSource: Sekhar 2012
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Integration With CMOS

The transition from silicon dioxide to alternative ILD materials has added complexity to their
integration process. Despite their low k-values, ILDs are mechanically weak, lack thermal
stability, and have diminished adhesive strength, making them susceptible to trapping chemicals
and delaminating. This adhesive weakness often stems from a high carbon concentration during
the PECVD process. One mitigation involves depositing an initial oxide layer to enhance the
film's adhesion. However, the PECVD process often induces plasma-related damage (PID) that
weakens the film both mechanically and thermally, making it more hydrophilic. The copper-
integrating dual-damascene process is particularly vulnerable to introducing PID at multiple
stages. To mitigate PID, alternative precursor and deposition techniques are being explored,
with the pore stuffing method—employing materials like PMMA to shield the surface—emerging

as a promising solution (see Figure 28) (Zhang et al. 2015).
Action Plan for Interlayer Dielectrics

00000 .
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Figure 28. Schematic of pore stuffing method.Source: Zhang et al. 2015

Table 24. Action Plan for Interlayer Dielectrics

Technology for
Energy Efficiency:

Interlayer dielectrics

Technologies of Interest: Novel materials for silicon-based logic devices
Challenges Solution Pathways
. Achieve ultra-low k-values while ensuring mechanical integrity . Develop novel materials and deposition methods to
and thermal stability. create stable, low-k porous ILDs.
o Balance dielectric properties with structural and mechanical . Optimize pore size and distribution to ensure structural
robustness. integrity and low dielectric constants.
. Address integration challenges with CMOS processes, including | e Innovate integration techniques to mitigate plasma-
thermal and plasma-induced damages. induced damage and improve film adhesion.
. Down-scale pore size without compromising dielectric . Explore the use of protective materials during fabrication
properties. to prevent damage to porous structures.
Major Tasks/Milestones Metrics Targets Timeline (years)
IEEDTET no;zlpzmde Tl Ly Experimental validation Meet metal compatibility requirements 2+
Lab demonstration Dielectric constant K<25 5
Mechanical testing Mechanical strength >4 Gpa 5
Dielectric breakdpwn analysis in Electric field vs. thickness High breakdown resistance 5
capacitors
BEOL processing compatibility Materials compatibility Compatible with sub-400°C processes 5
Develop novel deposition Deposition techniques Suitable precursors for low-k ILDs 5
methods
Felziiy etcthEDprocesses eI Etching efficiency Minimize defect and maintain low-k 5
Test material robustness Accelerated lifetime Comparable to industry standards 5
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Stakeholders and Potential Roles in Project

Stakeholder Role

. Develop and supply novel low-k ILD materials.

Product Manufacturers/Suppliers ) ) o - N
PP . Collaborate on the integration of these materials into existing fabrication lines.

. Provide specification for device performance that drive the requirements for ILD material

End Users/OEMs properties and feedback on the integration impact.

. Increase R&D on new ILD materials, explore innovative integration techniques, and
Academia contribute to understanding the science behind material behavior and process
development.

Required Resources Cross Collaboration Needs of Working Groups

. Collaboration between academia and industry. . Circuits and Architectures: Define material properties and
) . o metrics requirements.
. National lab with EWD effort to bring in more experts.
. Metrology and Benchmark: Develop methods to research
*  Access to CMP resources. lower dimension materials.

2.1.8.2 Interconnects and Contacts

Contacts and interconnects form the backbone of multi-layered microelectronic chips, ensuring
a coherent flow of data and power. Interconnects are the horizontal and vertical conductive
pathways that link the various components on a chip, ensuring smooth communication and
power distribution. Contacts connect the interconnects to the transistor switch itself. For different
physical reasons, as the dimension of interconnects and contacts decreases, the dissipation
associated with them increases. This dissipation was much less than that from the transistors
for decades but has grown to be comparable to the dissipation in the transistor itself. The
integration of novel materials into interconnects and contacts offers a promising avenue to not
only address dissipation but also improve the overall performance, reliability, and longevity of
next-generation microelectronic devices.

Novel Interconnects

The ohmic dissipation in metal interconnects necessitates the use of metals with lower resistivity
and prompted the move from aluminum to copper decades ago. As the dimension of these
interconnects shrink, grain boundaries and boundary scattering plays as much a role as the bulk
resistivity and motivates the search for metals without grain problems and with a low mean free
path. This issue has led to significant research into metals like ruthenium, which have slightly
worse bulk resistivity than copper but with short mean free paths that limit the effect of boundary
scattering. Ideal materials also need to be compatible with the dual damascene process, where
a barrier protects the ILD, and the interconnect metal fills both the vertical vias and the
horizontal trenches that form the wiring layer. The tightest geometry comes from the vertical part
of the interconnect: the interlayer via, which is discussed below.

As silicon continues to scale, the liner/barrier’s thickness in the interlayer via for Cu
interconnects becomes the bottleneck for further miniaturization. Liners that are applied post-
barrier enhance adhesion between the metal and the barrier, act as a precursor for subsequent
metal deposition, and support electromigration resistance. Ta/TaN is the incumbent liner/barrier
for the Cu dual damascene process, and TaN’s barrier thickness of 0.8nm has been
demonstrated without compromising its efficacy (Witt et al. 2018). Switching to Co or Ru from
the Ta further improves TaN barrier integrity (Witt et al. 2018).
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While a Ru/TaN combination can achieve
linewidths down to 2nm, the drive for
further miniaturization sparked interest in
barrierless alternatives (Wu et al. 2018),
including Co, Ru, Ir, Rh, Mo, and W. These
metals enable both hybrid metallization
and semi-damascene processes. Co and
Ru have garnered substantial experimental
validation. Because these processes
enable higher aspect ratio lines, it reduces
resistance, and in turn, improves energy
efficiency. Figure 29 shows Cu's
resistance becoming higher than Ru and
Co at smaller dimensions (van der Veen et
al. 2018).

Recent innovations have explored the
potential of 2D materials, such as
graphene and MoS;, as alternatives to
traditional barriers (Nogami et al. 2021; Lo
et al. 2018). These materials may hold
promise for enabling a new generation of
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Figure 29. Logarithmic comparison of the damascene line
resistance vs. the total conductor cross-sectional area of
Ru, Co, and Cu nanowires.Source: van der Veen et al. 2018

metals that could surpass the performance of copper.

Action Plan for Novel Interconnects

Table 25. Action Plan for Novel Interconnects.

Technology for
Energy Efficiency:

Novel interconnects and vias

Technologies of Interest:

Challenges

improve signal transmission.

copper vias as CMOS technology scales down to 3nm and
beyond.

. Integrate novel materials for interconnects and vias with
existing production technologies.

Major Tasks/Milestones Metrics

Develop models to find alloys

Novel materials for silicon-based logic devices

. Reduce energy consumption of traditional interconnects and .

. Address issues with the increased resistivity and reduced fill in

Resistivity and Thermal

Solution Pathways

Explore new low-resistivity, high-thermal conductivity
metals (e.g., ruthenium, molybdenum) and compounds for
interconnects.

. Investigate materials like graphene and TMDCs as
alternatives to traditional barriers in vias.

. Implement semi-damascene processes for via filling to
achieve higher aspect ratio lines and reduce resistance.

Targets Timeline (years)

Lower than known single-element

bulk resistance in nanowires Resistance

with optimal reS|st|\{|ty and Conductivity et 2
thermal conductivity
Differentiate grain, edge, and Grain, Edge, and Bulk Techniques that provide clear 9

resistance differentiation
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Perform lab tests on nanowire . . .
- . h Nanowire Resistance and < 200 Ohm-microns for contact
resistance with potential low rho- Contact Resistance resistance 5
lambda metals
New meth_od_s_for depo_smng low- Deposmqn_ Technique Successful integration with CVD/ALD 5
resistivity materials Efficiency
BEOL process compatibility with Compatibility with BEOL . o .
new interconnect materials Oxides & Thermal Properties FIEIT EEmRElIeAiy RS g
Tes_t accelerated I|fet|r_ne of new Accelerated Lifetime Testing Performance on par with current
interconnect materials for 5
Results standards
robustness
Stakeholder Role

. Develop new materials and processes for advanced interconnects and vias.

Product Manufacturers/Suppliers | ¢ Supply the semiconductor industry with innovative materials and solutions that meet
advanced performance specifications.

. Provide specifications and performance requirements for new devices.

End Users/OEMs
. Integrate and test new interconnect and via technologies in finished products.

. Increase R&D effort on the properties of new materials.

Academia . Collaborate on developing new methodologies for material synthesis and integration and
contribute to workforce education and training.

Required Resources ‘ Cross Collaboration Needs of Working Groups
. Collaboration between academia and industry.

. National lab with EWD effort to bring in more experts. . Circuits and Architectures: Define material

. . ) roperties/metrics requirements.
. Access to innovative materials. prop / q

. Metrology and Benchmark: Develop methods to research

. Investment in laboratory facilities, testing equipment, and lower dimension materials.

simulation tools for material development and device
integration.

Novel Contacts

Contacts refer to the regions where an interconnect makes a direct electrical connection to an
active device region, such as the source, drain, and gate of a transistor. Contacts allow for the
transfer of electrical signals and power between the transistor (or other active device) and the
interconnecting metal layers. The ohmic dissipation from contacts depends on the area of the
contact and becomes larger as transistor dimensions shrink. This dissipation is significant since
contacts are the largest feature of transistors in leading technologies. Integration of novel
contact materials has the potential to drastically reduce contact resistivity, enhance electron
transport, and minimize leakage currents. Such advancements can lead to significant
improvements in energy efficiency and overall device performance.

According to IRDS 2022, in some current technologies, the series resistance can degrade the
saturation current by 40% (IRDS 2022). As the gate pitch continues to scale, the repercussions
on the drive current due to external resistance are expected to intensify. This scaling, combined
with the anticipated rise in interconnect resistance, requires a drastic decrease in device contact
resistance. PMOS devices, which use holes as carriers, require metal contacts with a high work
function to reduce the Schottky barrier for holes, whereas NMOS devices, which employ
electrons as carriers, need metals with a lower work function. In practice, the Schottky barrier
height (SBH) is set by the metal-induced gap states (MIGS) and not the metal work function.
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A fundamental understanding of the variables underlying MIGS is needed to identify or engineer
contact materials to overcome MIGS. Another pathway is to explore other contact materials—like
semimetals and metal-insulator-semiconductor (MIS) contacts—that may be able to inhibit or
mitigate MIGS altogether. Once promising materials or approaches are identified, practical
challenges like process integration and compatibility must be considered.

Action Plan for Novel Contacts

Table 26. Action Plan for Novel Contacts.

Technology for
Energy Efficiency:

Novel contacts

Technologies of Interest:

mitigate Schottky barriers.

processes.

Major Tasks/Milestones

Identify novel materials with
potential to decrease contact

Novel materials for silicon-based logic devices

Challenges

. Minimize contact resistivity as device dimensions shrink.

. Align metal work functions with semiconductor energy levels to

. Manage metal-induced gap states (MIGS) that affect Fermi-
level pinning and contact performance.

. Integrate new contact materials with current manufacturing

Metrics

Contact resistivity and work

Solution Pathways

Employ MIS contacts with ultra-thin dielectrics to reduce
SBH.

Research and deploy semimetals or other innovative
materials that can potentially inhibit MIGS.

Complete a systematic study of MIGS to understand and
engineer their influence on SBH and contact resistance.

Develop compatible fabrication techniques for novel

contact materials within existing semiconductor

manufacturing workflows.
Targets Timeline (years)

Contact resistivity < 10 yQ-cm

engineering solutions for MIGS

resistivity and compatibility with function compatibility Conmgz el V;ggk,\flmgg) i ety LIS &3
PMOS and NMOS applications
Design and test MIS contacts to | gy requction and MIGS SBH <03 eV

reduce SBH, as well as 3-5

control

Effective mitigation of MIGS effects

Develop prototypes with novel
contact materials and MIS
structures

Electrical performance and
interface quality of prototypes

Prototype contacts meeting or
exceeding current industry standards 5-7
(10-100 pQ-cm)

Integration with advanced FET

Compatibility and

Demonstration of integration without

analysis

Stakeholder

technologies performance in FinFETs and erformance loss 24
9 GAA-FETs P
Commercialization and Process integration success Demonstration of scalability and 3.5
manufacturability testing and yield rate reliability in manufacturing
Performance and reliability Long-term stability and failure Failure rates below industry-standard 2.3

rates

Stakeholders and Potential Roles in Project

thresholds; extended device lifetimes

Role

Product Manufacturers/Suppliers

. Develop and supply innovative materials that meet the specific resistivity and work function
requirements for advanced contacts.

. Engage in R&D for scalable production methods of new contact materials and integration

technologjes.

End Users/OEMs

. Provide performance specifications and reliability requirements for contacts in various

applications.

. Test and validate the new contact technologies in real-world scenarios to provide feedback

for further development.
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. Conduct fundamental research on material properties, contact interface physics, and novel
contact architectures.
Academia

. Collaborate with industry partners for knowledge transfer and to guide research towards
commercially viable solutions.

Required Resources Cross Collaboration Needs of Working Groups

. Algorithms and Software: Develop predictive models for
contact performance and to simulate the effects of new

e Advanced material synthesis facilities. contact materials on overall device efficiency.
e High-resolution characterization tools for material analysis. i AP*‘(;“ Ilntegrate new contact materials into multi-chip
modules.

e  Computational resources for modeling and simulation. o )
e  Circuits and Architectures: Evaluate how new contact

»  Fabrication facilities for prototype development. materials affect the performance of circuits and overall
system architecture, including their impact on signal
integrity and speed.

2.1.9 Conclusion for Materials and Devices

The advancements discussed in the Materials and Devices chapter are fundamental to the
EES2 roadmap's mission to significantly reduce energy consumption across various sectors,
from consumer electronics to large-scale data centers. The integration of novel materials such
as 2D materials, CNTs, and ferroelectric materials, alongside advancements in transistor
technologies from traditional device structure to Si-GAA, is vital for energy efficiency
improvement.

Addressing the challenges of thermal stability, conductivity, and contact resistance is essential
and requires robust collaboration between materials science and device engineering, fostering a
co-design approach across working groups. New materials must be seamlessly integrated into
systems to create more energy-efficient next-generation devices. To achieve this, Metrology
and Benchmarking group is crucial to develop standardized testing protocols and precise
measurement techniques, ensuring material innovations are rigorously evaluated and reliably
transitioned from benchtop discoveries to industry-standard solutions.

To achieve our EES2 energy efficiency goals, strategic investment in the Materials and Devices
is crucial for mid-term success. By advancing technologies such as tunnel field-effect transistors
(TFETSs) and leveraging innovative materials like 2D materials and carbon nanotubes (CNTs),
we can significantly reduce energy consumption at the bit level. These advancements in MnD
are essential for driving the next wave of energy efficiency improvements, laying the hardware
foundation for a more sustainable future in microelectronics.

With the urgent need to deploy advanced energy-efficient devices due to escalating
environmental concerns, EES2 has set TRL 6 as the baseline for the deployment of these
advanced technologies. This target highlights the necessity for accelerated research and
development, the establishment of industry-wide benchmarks, and the development of
dedicated testbeds to validate and expedite the market adoption of emerging technologies.
Engaging all stakeholders—from policymakers to industry leaders—is crucial to ensure that the
pace of innovation matches the pressing timelines for achieving energy sustainability and
environmental preservation.
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2.2 Circuits and Architectures

In the pursuit of energy-efficient computing, the design of new circuits and architectures plays a
pivotal role. As new circuits and architectures are designed to address emerging computing
needs while also adapting to evolving CMOS/IC, memory, and interconnect technologies,
energy efficiency must be a core consideration.

There is a stark contrast in energy consumption between logic operations and memory access
(as shown in Figure 7 in the Introduction). Compared to an Int8 ADD operation, accessing on-
chip SRAM—uwhich is closest to the processor and the most energy-efficient form of memory—
can be up to 2,000 times more energy-intensive, while accessing off-chip DRAM can be up to
190,000 times more energy-intensive (Jouppi et al. 2021). The primary energy cost arises from
the capacitive charging and discharging associated with data transfer between compute
elements and memory, highlighting data movement as not only a performance bottleneck but
also a major energy sink.

This chapter synthesizes the collective insights from the Circuits and Architectures working
group, highlighting technologies that have significant potential for energy savings while also
considering economic viability. While the technologies discussed represent a selection of the
myriad options for improving energy efficiency within circuits and architectures, they exemplify
the type of innovation required to meet the dual demands of performance and efficiency. The
energy impact factors for each proposed technology, as compared with these technologies’
current counterparts, are specific to their applications and critical to understanding their potential
benefits.

Circuits and architectures bridge the gap between bits, instructions, and applications where
technologies can apply to one or more of these defined hierarchical levels. Nonvolatile memory,
for example, offers significant energy reductions at the bit level that also extend to the
instruction level. Technologies like compute-in-memory (CIM) decrease energy consumption per
instruction and enhance application performance through architectural innovations. Similarly,
technologies such as the compute express link (CXL) enhance instructional energy efficiency
and application performance by optimizing resource allocation. Finally, ASICs and domain-
specific architectures (DSAs) elevate efficiency at both the instruction and application levels by
tailoring hardware to specific computational tasks.

Working group methodology

The working group focused on high-impact technologies to improve energy efficiency and
performance related to memory access, domain-specific and application-specific architectures,
digital and analog compute-in-memory technologies, novel non-volatile memories, and EDA. To
quantify the potential energy efficiency gains of these technologies, the working group
conducted benchmarking through a literature search and compared the results to incumbent
technologies.

Table 27 shows the proposed technologies organized by group. Specific energy contributions
can be found in each of the following sections where applicable. Some technologies, such as
EDA or instruction set architecture (ISA), do not contribute directly to energy consumption.
However, proposed energy savings through utilizing these technologies are mentioned in their
respective sections. While compute-near-memory is discussed, this was considered more of an
integration scheme rather than a new architecture.
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Table 27. Technology Groups Addressed by the Circuits and Architectures Working Group.

Technology Group Specified Technology

Memory Access

CXL Fabric

UCle

Instruction Set Architecture

Non-Volatile Memory (NVM)

NRAM

ReRAM

STTRAM

PC-RAM

SRAM

Metis SRAM bit line variation reduction, energy
reuse

Compute-near-Memory

Vcache

MIV stacked ReRAM

DRAM Cache

Compute-in-Memory (Digital)

SRAM CIM
HBM PIM

Compute-in-Memory (Analog)

Neuromorphic

GPU
Domain-Specific Architectures TPU
(DSAs) FPGAs
Anton-3
Energy per bit simulations
EDA Advanced PDKs

DTCO

Figure 30 shows the technologies of interest with their potential energy efficiency improvement
factors and timelines to TRL 6, as determined by the working group. For more information on
TRL6, refer to section 1.5.
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Figure 30. Potential efficiency improvement factor and timeline for selected technologies of the Circuits and
Architectures working group.

Key takeaways
Table 28 summarizes the most significant identified energy efficiency opportunities that can be
achieved through advances in circuits and architectures.

Table 28. Key Takeaways for Energy Efficiency Opportunities in Circuits and Architectures.

Technology

Group Key Opportunities for Energy Efficiency

o  Utilize low-power NVM for Al weight applications with infrequent read

requirements.

Alternative NVM
e Improve energy per bit of read and write as well as density to be

comparable with DRAM and NAND memories,

. . e Investigate large application spaces that would result in significant
Domain-Specific energy and performance savings.

Architecture e Leverage the appropriate architecture for the specified use case.
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e Reduce the extreme barrier to entry by creating new algorithms and
software, along with security protocols and advanced hardware, for
. both digital and analog CIM technologies.
Compute-in-
Memory (Digital e Improve ADC to DAC overheads for neuromorphic computing to
and Analog) improve computational efficiency.
. Evaluate loT/Edge applications with alternative NVM to improve
energy performance for power-limited operations.
e Create and use open-source EDA for advanced architecture and
circuit development to reduce hidden overheads.
EDA . ) ) .
e Co-design software and architecture to improve energy efficiency and
reduce circuit overheads.
Grand challenges

Major challenges that must be overcome by circuits and architectures to achieve significant
energy savings include:

e Enabling compute-in-memory, whether digital or analog, through the creation of new
architectures, new security protocols, new EDA software for co-design, and significant
development of instruction set architectures and new software/algorithms.

e Demonstrating non-volatile memory (NVM) technologies that are comparable in cost and
density to DRAM or NAND, particularly when implemented in monolithic integration.

e Leveraging advanced EDA simulation software and co-design to create novel
architectures and simulation of device function, whether through optimization of current
structures or the use of alternative approaches such as 3D integration.

e Establishing R&D testing facilities to enable integration of novel materials and
architectures with current state-of-the-art technologies, while also testing and evaluating
energy efficiency and performance improvements.

¢ Minimizing energy overheads and enhancing overall performance by effectively
educating the current workforce, particularly from academic institutions, about the
importance of selecting the appropriate architecture for the right applications (e.g., opting
for GPUs over CPUs for intensive image processing tasks).

e Reducing the total cost of ownership of new interconnect fabrics that can reduce
overheads and optimize memory access.
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2.2.1 Memory Access

Classical computers use a von

Neumann architecture (see Figure 31), Central Processing

: Unit (CPU)
where a large fraction of CPU
instructions involve moving data SlE L
between CPU reglgters and.memory. Input N Arithmetic/Logic Output
However, the classical architecture has Device Unit (ALU) Device
limitations, given the pace at which

processor speed has outstripped
memory speed. To mitigate this,
architects first incorporated fast cache
memories located very close to the
processor, and then multi-core designs
offering parallel processing, with
individual caches for each core to lower the memory access time. More recently, the industry
moved to system on chip (SoC) and system in package (SiP) architectures to improve the time
required to access memory beyond the on-chip caches.

Figure 31. Classical von Neumann computer

However, cache memory, while fast and energy efficient, is not sufficient for all applications
because its storage is small relative to its large 2D footprint. To further improve the memory
read or write time, a hierarchy was created by computer architects based on three factors:
access rate (in terms of clock cycles, or how many times transistors actuate per unit of time),
storage size, and cost. Cache memory (SRAM) is built near the processor and is structured into
levels (L1, L2, L3) based on storage capacity and access time. DRAM is off chip from the
processor and is structured as the main non-immediate memory storage, slower than SRAM but
with a much higher memory density. Long-term storage of information is in NAND or disk
memory, which, unlike DRAM, retains stored information when power is removed. A pictorial
representation of the memory hierarchy in modern von Neumann machines is shown in Figure

32.
L2 L3 M
emol
g c bus v 1/0 bus
a
c c Memery
e 2 Storage
Register Level 1 Level 2 Level 3 DRAM Memory .
reference SRAM Cache SRAM Cache SRAM Cache reference MEFII::;W Nﬁdr;[r)n??;h
reference reference  reference reference reference
Size: 4000 bytes 64 KB 256 KB 16—64 MB 32-256GB 1664 TB 1-16TB
Speed: 200ps 1ns 3-10ns 10-20ns 50-100 ns 50-100 ms 100-200ps
Clock cycles: 1 3 930 30-60 150-300 150-300million  300,000-600,000

Figure 32. Typical memory hierarchy sizes and access times (c. 2019). Variations on this hierarchy exist for other
structures such as mobile, laptop, etc. Source: Hennessy and Patterson 2019; clock cycles assume a 3.33 GHz
clock.

Recognizing that the transfer of data between memory and compute is the largest energy
consumer, exploring the following areas can yield efficiency improvements in memory access:

o Page size
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e Interconnect fabrics
e [nstruction set architecture
¢ Universal Chiplet Interconnect Express (UCle)

As system architectures grow increasingly complex, featuring multiple memory domains and a
variety of processors and accelerators, there is a pressing need for a cohesive framework that
facilitates communication, prioritization, and resource allocation among these components.
Traditionally, this coordination has been managed through bus systems, which are pathways
that transmit data among the various components of a computer. However, the task of resource
allocation—such as accessing open memory banks or SRAM when necessary—is complex.
Moreover, managing the placement and transfer of data between memory and processors adds
further complications. Interconnect fabrics like CXL offer a robust communication protocol that
ensures coherency across processors, accelerators, and memory units (Bowman 2023). This
integration not only accelerates communication but also enhances overall system performance
and reduces costs. By enabling disparate components to function cohesively, such technologies
transform a collection of individual parts into a seamlessly operating high-performance chip.

The adoption of advanced technologies in memory access significantly enhances performance,
as demonstrated in Table 29. CXL technology, for instance, supports full duplex operations,
offering lower latency and improved energy efficiency compared to traditional LPDDR DRAM,
with potential energy savings up to a factor of 1.7. Furthermore, sophisticated interconnect
structures can markedly decrease the energy consumed during memory access. Although not
the primary focus of the Circuits and Architectures group, emerging interconnect standards such
as UCle are poised to dramatically reduce energy use per bit by 20-40x and significantly
diminish latency due to shorter interconnects.

Table 29. CXL and UCle Energy Impact Factor Comparison and Timeline for Inprovements to Memory
Access.

Sources: Sharma et al. 2022; Gervasi 2023; Gervasi and Chang 2023

Commercial Timeline for Lab

Baseline Commercial Benchmark Scale Projection
Specified Technology Energy Benchmark . on Data
Performance Product Energy Demonstration Centers
Performance (TRL 6, years)
- 5.8 GB/W for | Standard | 3.8 GB/W for ez
CXL optimized DDR5 64 GB DDR5 64 GB 1.5 0 red;z:/tlon,
0
- 6.4 GB/W for Standard 4.9 GB/W for li
CXL optimized DDR5 1.3 0 celline]
128 GB DDR5 128 GB savings
CXL Native DRAM 8- . 2x LPDDR- .
lane PCle Gen5 1.5-2.0 pJ/bit 6400 x 16 2.0-2.5 pJd/bit | 1-1.7 0 N/A
_ UCle 0.5-0.25 .
(chiplet interconnect . PCle 10 pJ/bit 20—-40x 1-3 N/A
. pJ/bit
architecture)
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There is also potential to achieve
lower losses and higher transfer 200 LPDDR

speeds through various printed circuit 5::
. o - a

board (PCB) materials and g 150 o |af
connectors, but these choices also g 00 X LY e
affect cost. The cost-performance E p q 89 )oggqr_‘oﬁi.f A &
trade-off must be considered in terms g 50 ;'!*‘%#ﬁ?
of total cost of ownership. S &

>

<
Challenges and solution pathways 2 D : i . 54
for memory access Bandwidth (GB/s)
Reducing unnecessary bit overhead s perbench  ©gec s X264 x leela
through page size adjustments o perlbench_cxl o gec_exl & x264_cxl < leela_cxl

The page size is the lowest number of . 33 CXLN DRAM 8-lane PCle Gens ve. LPDDR

. : igure ative -lane e Gen5 vs.
bits/cells of a memory architecture that 2x LPDDR-6400 latency vs. bandwidth comparison. Source:
can be accessed. A memory page of Gervasi and Chang 2023

8,192 bits requires all 8,192 bits to be

accessed, when only 256 or 512 bits

are needed. Utilizing a memory mechanism with a more granular page size enabled with a
smart memory controller could potentially eliminate the overhead of unused bits. Another
possible implementation is the memory “buffets” concept (Pellauer et al. 2019), which provides
explicit, composable data transfers between a processor and the external memory, and access
requests decoupled from the request receiver, thereby reducing or eliminating the need for on-
chip buffering. The design of buffets has been publicly released in register transfer language
(RTL) code and is flexible enough to fulfill the needs for memory access architecture in a variety
of use cases.

Improving memory access granularity

Significant energy wastage occurs in program execution since only a small fraction of the page
size is utilized, yet the entire page is pre-charged. This leads to all bit lines being energized, all
sense amplifiers being employed to detect signals, and the complete transfer of all bits of
information back to the memory bus. Possible solutions are to create memory controllers that
have optimized closed page memories or more SRAM-like addressing. Implementing the DRAM
address scheme to perform the Row Address Select (RAS) and Column Address Select (CAS)
cycles without delay between them could help reduce activation and recharging required for
memory access. In addition, eliminating open page mode for applications with low hit rates
would reduce overhead by eliminating constant power to word lines of DRAM cells. Lastly, multi-
page-sized memory could be a possible solution for reducing wasted energy through smart
memory address buses; however, this may impact chip size and performance.

Optimizing power in system fabrics

As systems became more complex, a standard interface method to connect all the devices to
the CPU and establish communication protocols was needed. The Peripheral Component
Interconnect Express (PCle) was created to help support this through interconnect standards of
the PCBs and the component connections. What made PCle popular was the ability for
backwards compatibility between older devices and improved data transfer speed through a
parallel bus architecture. With the emerging emphasis on energy efficiency and speed,
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interconnect fabrics and components must be adapted. Possible solutions include exploiting
new and upcoming interconnect standards, such as UCle (Sharma 2022) and CXL. They are
designed for reduced latency and employ memory pooling, which can significantly reduce data
center memory requirements per device (Bowman 2023). These advanced interconnect
technologies can be combined with improved PCB materials targeting reduction of dielectric
losses at high frequencies and improving impedance matching to minimize signal reflections.

Reflecting true total cost of ownership (TCO)

Re-architecting memory for power optimization could lead to an increase in die size and,
consequently, higher costs. Similarly, enhancements in PCB technology, such as improved
connectors and board materials, might elevate initial expenses in favor of energy savings.
These higher upfront costs must be evaluated in conjunction with the long-term savings derived
from decreased energy consumption. Companies should promote the energy efficiency of these
devices and articulate their total cost of ownership (TCO), which integrates reduced energy and
cooling expenses, particularly in data centers. This comprehensive TCO perspective should
also extend to consumer electronics, potentially through an initiative like the ENERGY STAR
program (Energy Star 2024).

Integration of multiple IP stacks with reduced latency

The relentless miniaturization of chip technologies necessitates innovative approaches to
enhance latency, yield, and energy efficiency. While striving for increased on-chip functionality
to boost performance, it is crucial to acknowledge the challenges associated with larger chips,
which often exhibit lower yields due to constraints such as die reticle size limitations.
Additionally, transitioning to newer manufacturing nodes introduces complexities related to cost,
time to market, and supply chain management (Sharma 2022). Chiplet integration offers a
compelling solution to these issues. This design strategy allows for the incorporation of cutting-
edge technologies alongside established ones, reducing time to market and enhancing energy
efficiency through shorter interconnects. Chiplet architectures also enable the integration of
diverse process technologies—such as different cores, memories, inputs and outputs,
photonics, and mixed-signal components—into a single package, optimizing energy usage.
Furthermore, UCle’s versatile interconnect standards facilitate compact device designs and
closer component placement, enhancing communication speeds and overall system
performance. Establishing UCle-based chiplet technology standards will significantly influence
both performance and energy efficiency.

Action plan for memory access

Table 30. Action Plan for Memory Access.

Technology for Energy Efficiency | Memory Access

. All semiconductors utilizing memory outside of SRAM cache

. System architectures such as data centers

Technologies of Interest: .
. Smart fabrics

. Signal quality improvement of PCB materials

Challenges Addressed ‘ Solution Pathways
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. Reduce open page mode for low hit rates.

. Implment arbitrary page sizes (e.g., multi-page-size DRAM
with smart memory buses).
. Optimize memory movement such as memory pooling.

. Interconnect fabrics optimization of resources. ) o )
. Improve signal transmission, interconnect, and sockets

® PCB signal quality. on PCB to reduce resistance, capacitance, inductance,

e Memory overheads, such as page size. etc.

. Utilize system fabrics with power optimization for
performance vs. energy efficiency.

. Find alternatives to copper for signal and power.
distribution in PCBs such as CNTs.

Major Tasks/Milestones Metrics Targets Timeline
Protocol changgs for memory Protocol approval JEDEC, CPU/GPU/APU makers 3-5 years
access optimization

Increase effectivity of memory Memory models for all Operating systems, hypervisors,

. . L 4-6 years
semantic storage devices adopted applications
Improved PCB materials PCBs ywth improved sn.gn.al ATl e e AR TS
development transmission characteristics

Sockets with improved signal

Improved socket development . o All system bus add-in strategies 4-6 years
transmission characteristics
Memory architectures that
exploit SRAM-like command - .
interface to reduce wasted Power-efficient memory Memory suppliers 5-7 years
access
System architectures that . .
e . Operating systems, hypervisors, smart
optimize memory resources and New system architectures fabric 6-8 years
minimize data movement
Increased use of remote
direct memory access . . )
Increase use of energy-efficient (RDMA), data left in place Systgm architects, fabric device
suppliers, system software stack, 6-8 years
data movement when power states are hyDervisors
available, smart fabrics that yP
reduce traffic
Software and applications that Applications tuned for power Operating systems, hypervisors, 810 vears
are power-aware conservation applications y
Stakeholders and Potential Roles in Project
Stakeholder Role

. DRAM suppliers to define power-efficient core design options.

. Processor/memory controller suppliers to support protocol for new memory types.
Product Manufacturers/Suppliers o . m . .
. Standards organizations to consider power efficiency as a memory design requirement.

) PCB suppliers to improve quality of materials.

. End users evaluate TCO requirements in the context of power vs. performance.

End Users/OEMs e  End users to evaluate improved PCB materials that may require additional upfront capital
but have backend energy savings.

. Architectural studies in memory architecture for power reduction.

. Development of power-efficient data buses.

Academia - —
. Development of power-efficient support circuits (phase-locked loop [PLL], etc.).
. Exploration of new materials for PCBs, signal transmission.
Required Resources ‘ Cross Collaboration Needs of Working Groups

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 97




Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

. Innovation needed in on-chip power and signal distribution.
. Improved PCBs’ quality may require new materials.

. System architects look for improvements to card edge . Circuits and Architectures: Include resource fabrics as key
connectivity. design goal for memory efficiency; remove open page

) . . memories with low hit rates.
. Accurate power simulation models for memory architectures.

. Materials and Devices: Improve PCB material for
improved signal loss and alternatives to Cu for signal and
o Metrics for power utilization in TCO calculations. power distribution.

. Device power requirements documented early in design phase.

. Research reducing data movement and redundancy, especially . Algorithms and Software: Help with memory protocols to
exploiting new technologies such as NVMs. provide greater granularity of access, which will possibly
require cooperation between the architecture, compiler,

. Research in smart fabrics that use energy efficiency as a design and operating system.

target.

. Develop alternatives to Cu for signal distribution to reduce
power expended to achieve high signal quality.

2.2.1.1 Interconnect Fabrics

The working group created an additional action plan for interconnect fabrics because of their
importance to memory access. CXL is proposed as a replacement to PCle given its open-
source nature and its ability to target data centers, which collectively use 1-2% of global energy
(Masanet et al. 2020). CXL leverages memory pooling, which is the ability to have multiple
devices store data in the same memory bank, removing the need for excessive memory storage
and, as a result, simplifying the software/algorithms (Woo 2021). It also includes new coherency
protocols for accessing cache and device memory. Finally, CXL utilizes low latency connectivity,
which is advantageous given the increase in memory needed for Al and other large memory
workloads.

For further energy reduction, we propose utilizing UCle with CXL, as well as replacing or
supplementing PCle where feasible. UCle has been shown to reduce the energy per bit to 0.25
pJ/bit, a 40x savings over PCle at 10 pJ/bit (Sharma et al. 2022). UCle also allows for the
designer to create SoCs and SiPs of chiplets from different sources or nodes for a complex
design and function. In addition, UCle could allow for integration of 2D and 2.5D integration
schemes for improved energy per bit.
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Action plan for interconnect fabrics

Table 31. Action Plan for Interconnect Fabrics.

Technology for Energy Efficiency | Interconnect Fabrics

Technologies of Interest: Communication between data and processors in computing systems

Challenges Addressed Solution Pathways

. Utilize CXL (Compute Express Link), which provides a
system-level interconnect standard with a fixed electrical
and protocol solution as well as a limited number of
physical modules and sockets to support it.

. Expand computing systems architectures with unified
connectivity between resources.

. Provide a standard electrical, protocol, and command structure

usable by all resources. . Adopt UCle (Universal Chiplet Interconnect Express) to

expand the CXL concept to chiplets. UCle solutions likely
use CXL interconnects for system interaction.

Major Tasks/Milestones Metrics Targets Timeline
NVMe (NVM Express)
moving to CXL, evolving with Data centers
memory semantics

Standard resource module:
Storage

Sampling now.
Standards in 3 years.

Now: CPU/GPU + HBM.
6 years: CXL-like chiplets.
20 years: order chiplets on

Chiplet assemblies shipping,
UCle adoption integrating devices from System-on-chip (SoC)
multiple suppliers

Digikey.
) Systems shipping with
CXL adoption CXL modules Data centers 3 years
Standard resource module: Memory modules with Data centers 3 years: custom solutions.
Memory CXL interfaces 6 years: standard commodities.

Continued development of
Direct Access (DAX), OS
support for memory pooling Data centers 5-10 years
and sharing, applications
using these modes

Memory semantic data access
mechanisms

Stakeholders and Potential Roles in Project
Stakeholder Role
. Provide compatible modules for fabric-based systems.

Product Manufacturers/Suppliers | ® Provide compatible chips for modules.

. Provide compatible chiplets for chiplet assemblies.

Academia e  Migrate from filesystems to memory mapped data.
Standards Organizations . Define standards for CXL, UCle, and chiplets.
Required Resources ‘ Cross Collaboration Needs of Working Groups

. Power requirements and TCO analysis communicated to
suppliers, end users, and standards bodies. e  Algorithms and Software: Develop software frameworks
that support the latest interconnect technologies to
ensure compatibility and performance optimization across
. Research in improved PCB materials, replacements for Cu for different platforms.
signal and power distribution.

. Operating systems, drivers, and education.

. Metrology and Benchmarking: Ensure standard

e  Software development of memory semantic access such as specifications are aligned to enable seamless
DAX must continue and not get stalled despite discontinuation interoperation among different interconnect technologies.
of Optane.
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2.2.2 Digital Compute-in-Memory

In traditional computing architectures, logic gates are fundamental components that perform
basic operations on binary data—essentially, the ones and zeros that are the backbone of
digital systems. These gates process signals and generate outputs based on inputs, enabling
the execution of complex computational tasks. For example, a simple operation like addition or
the comparison of two numbers is carried out by a series of logic gates interpreting and
processing binary data.

The energy and latency cost to access memory in conventional computing architectures, paired
with the increase in Al and ML (Mehonic and Kenyon 2022) and their immense off-chip memory
access requirements (Biswas and Chandrakasan 2019), contribute significantly to the overall
energy consumption and latency issues in microelectronics. Hence, new architectures such as
compute-in-memory (CIM) are required to not only significantly lower the unsustainable energy
usage of Al/ML technologies, but also improve performance.

In CIM architectures, data is both processed and stored within memory cells, eliminating the
need to constantly move data back and forth between the memory and the processor—a
process that typically consumes large amounts of energy. This method is particularly
advantageous for operations that involve repetitive calculations such as vector multiplication,
which is a basic mathematical process often used in computing (Agrawal et al. 2018; Kim et al.
2021; Lin et al. 2022).

CIM technology can utilize various types of memory, such as SRAM (static random-access
memory), DRAM PIM (dynamic random-access memory processing-in-memory), STTRAM
(spin-transfer torque random-access memory), and FeRAM (ferroelectric random-access
memory). These memory cells need to be organized in a way that allows them to perform
calculations effectively, similar to how logic gates in traditional computing are arranged to
perform operations.

However, standard SRAM designs, which typically use a structure with six transistors per
memory cell, are not suitable for complex operations like matrix multiplication, due to potential
disruptions when reading and writing data. Thus, new SRAM architectures that can handle
these computations without such disturbances must be developed. This need for new designs
applies not just to SRAM but to all memory technologies if they are to support CIM effectively.

Utilizing CIM technologies is projected to yield an estimated energy efficiency improvement of
21,000x, as shown in Table 32. These projections, highlighted in Marvin Chang’s presentation
at the 2022 IEEE VLSI symposium (Chang 2022), suggest that adopting the Metis
Microsystems approach could improve the balance between energy consumption and
processing speed (energy-delay product) by approximately 10x (Bhavnagarwala 2021). The
Metis Microsystems approach strategically integrates advanced computational and memory
components to increase energy efficiency and minimize the delay in data processing tasks. This
approach particularly emphasizes SRAM due to its superior performance benefits compared to
other non-volatile memory (NVM) technologies. While SRAM-based CIM offers considerable
advantages in speed and energy efficiency, making it highly suitable for applications in
accelerators where memory such as register files and cache are predominantly SRAM-based, it
is also essential to explore alternative CIM architectures (Gao et al. 2017; Sze et al. 2017). This
exploration is crucial for adapting to diverse application needs such as IoT devices, which may
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face space constraints, or systems managing extremely large datasets where the properties of
SRAM might not yield the most energy-efficient outcomes. Pursuing development in other
memory technologies like DRAM, NAND, or other non-volatile memories will ensure that energy
efficiency gains are maximized across a wider range of computing scenarios.

Table 32. Comparison of SRAM-Based CIM at 1-Bit Precision.Current (Chang 2021) and projected energy impact
of utilizing efficiency improvements on SRAM technologies (Bhavnagarwala 2023), as compared to an average of 1-
bit precision of currently available accelerators (Shankar and Reuther 2022).

Baseline Commercial Commercial TRL 6
Specified Tops/W 1-Bit Benchmark Energy Impact o
. s Energy Benchmark Timeline
Technology Precision Energy Factor
Performance Product (years)
Performance
advanced
SRKI\I\: ((DJISM N 0.1 fJ/op current
analo 9,600 (current), (current), commercial 63 fJ/op (1-bit 480 (current), 1-3
multi lg_ 96,000 (mature) 0.01 fJ/op Al/ML precision) 4,800 (mature)
Py (mature) accelerators
accumulate
(MAC)
advanced 0.03 fJ/op current 2,100
CMOS 32’0220(0()%%%0’ (current), commercial 63 fJ/op (1-bit (current), 1-3
SRAM CIM + (ma’;ure) 0.003 fJ/op Al/ML precision) 21,000
digital MAC (mature) accelerators (mature)
current
commercial 63 fJ/op (1-bit
NVM 1,440 0.7 fJ/op AlML precision) 90 3-5
accelerators
current
commercial 63 fJ/op (1-bit
DRAM 1,120 0.9 fJ/op AlML S 70 3-5
accelerators

Challenges and solution pathways for digital CIM

Active energy and latency overhead from bitcell transistor variability

Active energy and latency are significantly impacted by the variability in memory bitcells, which
are the fundamental storage units in memory arrays. Each bitcell’'s performance varies, affecting
the speed and accuracy of reading data. Slower bitcells may consume more of the initial energy
supply (precharge) from other cells through leakage mechanisms—unintended electrical flow
that depletes charge. This issue often necessitates increased voltage to accurately write data to
these less responsive, or “worse,” cells.

Because memory plays a crucial role in computing speed, addressing these variations is
essential. About 70% of an ASIC’s energy is consumed by SRAM buffers and register file
arrays, which manage data temporarily for quick access (Gao et al. 2017). Reducing the energy
lost to inefficient bitcells and leakage can therefore lead to significant improvements in overall
energy efficiency.
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The Metis Microsystems approach mentioned earlier includes innovations like harvesting energy
from data movements and employing self-regulating circuits. These strategies aim to
significantly reduce energy wastage. This approach not only addresses energy consumption but
also optimizes the operational latency of memory-intensive tasks.

Power delivery

Power delivery in SRAM-based CIM architectures involves challenges that need to be
addressed for efficient operation. SRAM CIM is typically structured around an advanced base
cell design, such as an 8-transistor setup, which fundamentally alters how power is supplied and
managed within the memory chip.

Firstly, SRAM CIM operations frequently activate numerous word lines (WL), the control lines
that select memory cells for reading or writing. This requires robust power delivery systems for
the WL drivers, which are circuits that activate these lines. However, noise—fluctuations in
electrical signals—generated by WL activations can interfere with the computational processes,
introducing errors. To mitigate this, implementing a denser power grid has been proposed. This
approach distributes power more uniformly across the chip, helping to stabilize voltage levels
and reduce computational noise.

Secondly, activating many bit cells simultaneously for static and dynamic computing tasks
generates considerable noise in power delivery. Such noise issues are also prevalent in
alternative CIM structures that employ NVM technologies. These challenges highlight the need
for innovative power delivery solutions to ensure reliable and accurate memory operations in
advanced CIM architectures (Verma et al. 2019).

Architectural challenges related to the specific use case

CIM technologies excel at performing matrix vector operations rapidly, which is essential for
tasks like image processing and machine learning. However, these operations represent just a
fraction of the computational needs. CIM systems often require integration with other
technologies to handle other types of computational tasks. This integration demands careful
management of non-idealities that arise from analog signals, especially those affected by
temperature and voltage variations. For CIM to function effectively alongside different
accelerators and ASICs, it is crucial to ensure that these components can communicate
seamlessly, adapting to the unique signal requirements of each device. This compatibility and
efficient communication between various components are critical for the successful deployment
of CIM technologies.

Disruption to 50 years of software

For the past 50 years, von Neumann architecture has been the choice for all computer
architectures, and all software has been built with compute and memory separated. While the
hardware has specific challenges, including power delivery, CIM array structure, ADC to DAC
limitations, and lack of new EDA software for CIM layout and simulation, the largest bottleneck
is software. Software must map its automatic code generators in the compiler stack to the
hardware for optimal functionality. This will require new compilers and likely new instruction set
extensions as well. Additionally, even with CIM technologies, conventional storage—whether
DRAM/NAND or others—is still needed, and the transfer of information to and from CIM
architectures must be programmed.
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CIM size-related challenges

While CIM using SRAM significantly reduces energy consumption by eliminating the need for
data transfers between the multiply-accumulate (MAC) unit and cache memory, it necessitates
the use of larger MACs within the accelerator. The MAC, responsible for performing arithmetic
operations essential for processing tasks, becomes considerably larger due to the multiple
transistor configurations used in SRAM-based CIM. No single architecture has yet emerged as
dominant, leading to increased sizes of MACs. Additionally, SRAM transistor scaling is not
progressing as rapidly as the latest node transistors are due to technological and manufacturing
challenges, which limits the miniaturization and efficiency improvements typically seen in newer
semiconductor technologies (Heyman 2023). As SRAM continues to scale down, leakage
currents increase, which requires more standby power. This becomes a challenge for edge or
IoT devices that have limited space and power resources. A potential solution lies in adopting
smaller non-volatile memory technologies such as STTRAM, FRAM (ferroelectric random-
access memory), spintronics, or ReRAM (resistive random-access memory), although these
alternatives also come with their own set of challenges. For more details on non-volatile
technologies, refer to the Materials and Devices chapter.

Action plan for digital CIM

Table 33. Action Plan for Digital CIM.

Technology for Energy Compute-in-Memory

Efficiency
. Architecture for software to target CIM platforms for efficient utilization of CIM arrays.
. Energy and latency cost of moving data from local memory along wire paths for each
Technologies of Interest: computation.

. Bitcell transistor and read current variability limitations on performance, energy efficiency,
and accuracy of CIM arrays.
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Challenges Addressed ‘ Solution Pathways

. Using CIM architectures would significantly reduce the
data transfer between processor and memory. Two-thirds
of memory energy overhead could be eliminated.

¢ Reduction of memory data access and movement for MAC e Developing new architectures that do not require ADCs
operations. and eliminating overheads of bitcell transistor variability

. ADC overheads and bitcell variability limiting TOPS/W and could enable CIM arrays to reach much higher efficiencies
accuracy. (3,000-5,000 TOPS/W).

. Harvesting electrostatic energy with self-regulating circuit
action can reduce the energy consumed by a read access
in a CIM array by >80% while doubling performance.

Major Tasks/Milestones Metrics Targets Timeline
Demonstrator of circuits to Bitpath energy use/read
minimize the overheads of access; latency of bitpath 10x imorovement in the enerav-dela
CMOS memories from bitcell from word line select to P . 9y y 12 months
. product metric
transistor and read current capture of data at array
variability output
Demonstrator of circuits to Bitpath energy use/read
minimize costs of moving data access; latency of bitpath . .
. . } 10x improvement in the energy-delay
along local and global bitpaths in from word line select to roduct metric 12 months
large CMOS memories from capture of data at array P
harvesting evaluation energy output
s enan. | TOPSI (raxmum o
. . ) L # of OPS/Joule that b
arithmetic operation eliminating ° . ou'e . a: can be 5,000 TOPS/W 12 months
. accomplished with the CIM
ADC overheads incurred from
array)
analog approaches

Stakeholders and Potential Roles in Project

Stakeholder Role

. EDA tool vendor (Synopsys, Cadence, Siemens, etc.) and foundry providing PDKs relevant to
multi-project wafer (MPW) of test chip.

. Industry members (fabless, foundry, and integrated device manufacturers [IDMs]) and
government labs designing their own chips.

Product Manufacturers/Suppliers

End Users/OEMs

. Interdisciplinary: Johns Hopkins University (JHU) Applied Physics Laboratory (APL) could
Academia enable CMOS memory solutions to be more competitive in a traditionally NVM leadership
domain of ‘always-on’ availability for fast cognitive wake-up function.

Required Resources ‘ Cross Collaboration Needs of Working Groups

. EDA tools for designing SRAM/RF/CIM arrays and custom
arithmetic components, including access to a CMOS platform
PDK, servers equipped with these tools, and MPW test chips for | o Education and Workforce Development: Principal
creating demonstrator chips. investigators (Pls) should seek partnerships across

industry and academia. Workforce development is

enhanced when interdisciplinary programs offer targeted
internships for university students. National laboratories,

. JHU APL’s potential contribution of thermoelectric energy with their extensive lab and computing resources, are
generator (TEG) integration into chip packages to enhance ideal for developing prototypes for these programs.
CMOS memory retention energy, offering a more competitive
solution than NVM.

. Detailed specifications for new circuits and architectures, with
a comparative analysis against standard industry designs.

2.2.3 Analog Compute-in-Memory/Neuromorphic Computing

While SRAM-based CIM uses digital memory techniques, or discrete values, alternative CIM
architectures are viable using analog technologies with continuous (non-discrete) values.
Analog CIM uses architectures with non-volatile analog memories as synaptic weights (Z. Wan
et al. 2022) or signal combinations at each node to determine the output variable. These
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architectures can be built using various NVMs or specialized circuitry tailored for different
mathematical functions, effectively creating an analog computer for dedicated applications.

Of particular interest is the application of neuromorphic computing, or brain-inspired computing.
This technique uses neural networks that model the structure of the brain, creating artificial
neurons such as memristors (Chu 2020; Kumar et al. 2022), spintronics (Grollier et al. 2020),
phase change memory (Sebastian et al. 2017), SRAM (Jhang et al. 2021), and more. It should
be noted that neuromorphic structures do not need to be purely digital or analog. They can be a
combination of both, such as SRAM with an analog MAC. Neuromorphic computation can occur
through spike encoding or spike compute through spiking neural networks (SNN). SNNs for Al
and ML utilize biological models of neurons to carry out computations or pattern recognition in a
more energy-efficient manner compared to conventional deep neural networks (Yamazaki et al.
2022) by having compute and memory at the same location.

Table 34 illustrates that neuromorphic computation offers substantial energy savings.
Simulations predict that highly parallel memcapacitive devices could achieve up to 9,000 times
the energy savings per operation over traditional accelerators. For analog neuromorphic
systems, projections show a potential 350-fold energy savings. In the digital realm, SRAM-
based CIM adapted for neuromorphic architectures could provide up to 2,100 times, and
potentially even greater, energy savings compared to existing accelerators in the near future.
Notably, digital CIM technologies offer higher precision than their analog counterparts (Mehonic
and Kenyon 2022).

Table 34. Neuromorphic CIM Technologies Compared to Current Commercial Al Accelerators at 1-Bit
Precision.

Sources: Demasius, Kirschen, and Parkin 2021; Zimmer et al. 2020; W. Wan et al. 2022; Krishnan et al. 2022; T.
Xiao et al. 2022; Chang 2022; current and projected efficiency improvements on SRAM technologies from
Bhavnagarwala 2021, 2023.

Baseline . N—
Ener; Commercial Commercial Energy Impact Timeline for
Technology " gy Benchmark gy Imp Lab Scale
Specified Technology = Performance Benchmark Factor .
Group ) Energy Demonstration
(1-bit Product (X Factor)
L Performance (TRL 6, years)
precision)
Memcapacitor current
devices enabling 0.007 fJ/op commercial 63 fJ/op (1-bit 9000 35
parallel MAC (simulation) Al/ML precision) ’
operations accelerators
r\ifeu(:t% Tcr:str: :z- 5.8 fJ/op current
multilication with (current), commercial 63 fJ/op (1-bit 11 (current), 35
. p 0.18 fJ/op Al/ML precision) 350 (mature)
. resistive memory
Compute-in- . (mature) accelerators
devices
Memory -
Architectures Neuromorphic- 5.8 fJ/op current
(Neuromorphic) Pruning/quantization (current), commercial 63 fJ/o.p.(1-b|t 11 (current), 35
of models 1.3 fJ/op Al/ML precision) 48 (mature)
(algorithmic) (mature) accelerators
Neuromorphic-
Event-driven 5.8 fJ/op current
asynchronous (current), commercial 63 fJ/op (1-bit 11 (current), 35
computing 1.9 fJ/op Al/ML precision) 33 (mature)
(clockless) for deep (mature) accelerators
learning
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Compute-in- advanced CMOS 0.03 fJ/op current. . 2,100
Memory SRAM CIM + Didital (current), commercial 63 fJ/op (1-bit (current), 0-3
Architectures 9 0.003 fJ/op Al/ML precision) 21,000
o MAC
(Digital) (mature) accelerators (mature)

Challenges and solution pathways for analog CIM/neuromorphic computing

Spike encoding and computation

In contrast to other neural networks, spike encoding neural networks (SNNs) use signal timing
to convey information. This more closely mimics the brain’s synaptic responses through time
and its ability to transfer information between neurons. In addition to emulating the brain more
closely, SNNs are more powerful than traditional artificial neural networks (Zhang et al. 2022).
SNNs can allow for immense energy savings of between 100,000-300,000x over continuous
value networks and three orders of magnitude over CPUs, depending on the task (Zhang et al.
2022).

However, significant challenges remain for SNNs. For example, analog devices are not yet
robust enough for long-term use (cycling) compared to CMOS transistors (Merolla et al. 2014),
necessitating further investigation into how to better develop and enable such devices. (For
more information on neuromorphic devices, see Section 2.1.7.) Programming of images or
speech for SNNs will require new programming methodologies/languages or translation from
existing ANNSs. Lastly, because SNNs are still relatively new, investigation into viable
applications is ongoing.

ADC and DAC overheads limiting TOPS/W

Any compute-in-memory structure must communicate with a microprocessor using digital inputs
and outputs. Therefore, continuous analog signals from SRAM CIM signals must be converted
to digital values. Current challenges with analog-to-digital converters (ADC) and digital-to-
analog converters (DAC) include:

e Increased IC area from DAC inputs and outputs from the analog memory arrays (Xiao,
Jiang, and Chee 2022).

e Multiple devices per input/output circuit, requiring heavy power use (Amirsoleimani et al.
2020), with some ADC accounting for up to 92% of total power consumption of the circuit
(Yao et al. 2020).

¢ Difficulty in achieving more than four-bit accuracy (Danial, Sharma, and Kvatinsky 2020).

To move past size, speed, accuracy, and power concerns for digital CIM with analog MACs for
best energy performance, the EES2 working group and others (Shafiee et al. 2016; Zhang,
Huang, and Shen 2020) suggest using digital technologies for immediate implementation to
avoid overhead in the near term. Some techniques are already being employed, such as
improved conversion algorithms and circuit design innovation, to improve ADC to DAC
overhead by ~7.5x (Danial, Sharma, and Kvatinsky 2020). Research in this area should
continue, especially for neuromorphic computing.

Electronic Design Automation Tool Development

Currently, there is no open-source EDA software suitable for neuromorphic design, nor are
there standards set by the community for which device structures and architectures are the
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most viable for neural networks. An open-source or academic-licensed EDA software with up-to-
date process design kits specific to advanced neural network structures would allow for
advancement of neural networks through simulation for speed and energy efficiency, as well as
application space-testing prior to hardware creation. In addition, co-designing algorithms with
devices and architectures can address the ADC to DAC power and area overheads before
device creation (Christensen et al. 2022).

Table 35. Action Plan for Analog CM/Neuromorphic Computing

Technology for Energy
Efficiency

Neuromorphic and analog computing

Potential areas of interest include edge applications, SoC, scientific computing (e.g., climate
forecasting, detectors, etc.), sensing, loT, Al hardware (inference, on-chip learning), Al/ML,
wearables/embedded devices, healthcare (e.g., smart/body-integrated sensors), and smart
homes.

Technologies of Interest:

Challenges Addressed Solution Pathways

. Hardware intrinsically distributed through neuronal processing . Focus on developing robust neuromorphic architectures
(spike encoding and spiking compute). (devices/hardware needed for real-time learning) and
then scale up architectures/systems for complex or large

] Plasticity at neuronal circuit level and architecture level . .
compute applications (scalable learning rules).

(removes bottleneck of memory accesses).
. Engage users by developing appropriate

. Harnesses multiple neuronal/sub-neuronal units that operate benchmarks/applications of analog computing.

at low precision.

. Create tools for programming scalable neuromorphic
systems. Software system is lacking. Better connections
with ML community (large LLM); neuromorphic should not
evolve separately. Open-source tutorials and repositories.

. Opportunity to bring computing closer to physics domain, which
provides more feasibility to heterogeneous architectures (low
power, so can be closer to other compute devices), data
bandwidth advantage (data preprocessing to reduce processing
requirements), and takes maximum advantage of 3D . Develop EDA tools optimized for neuromorphic and
architecture. related approaches.

Major Tasks/Milestones Metrics Targets Timeline

. Increasing access to
neuromorphic systems for testing . 3-5 years

e Benchmarking against alternative | ®  1-2years

Learning and inferencing ASICs (depends on
Benchmark current tandard dataset benchmarks)
neuromorphic systems standard datasets vs. e Implementing a specific number e 2-3years
existing hardware of neurons and degrees of free (commercially

parameters, with the timeline viable

depending on when scale chips/systems)
definitions are established.

. Edge accelerators: < 1 milliwatt

(mW), 4 bit precision, > 1 Giga *  Syears (edge)
operation per second (GOPS/s) e 5-10years
(general
. General compute: 4-8 bit compute)
Metrics and targets will isi
Develop benchmarks that stress d d gth precision, up to 10 GOPS/s e  10-20years
different aspects of epend on the e HPC: Often, high bit precision is (HPC)
neuromorphic system type/application of not required; typically, adaptive e  (Also possible
neuromorphic system precision uses 4-8 bits but can that all three
increase as needed, facilitating a categories
new computing paradigm that coulq e_volve
enhances speed and energy on similar
efficiency beyond exascale. timescales)

Develop EDA tools the
community can agree upon and Toward millions or tens of millions of

i twork scal ) 2-
use together. Open-source or System/network scale synthetic neurons 3 years
academic licensing.
Availability of high-level High-level language More intuitive programming; high-
. ) 3-5 years
programming language development level abstraction
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Removing energy barrier for
neuromorphic devices

Joules/operation,
total energy per
program/algorithm,
average power (single W and
lower, ~100 mW)

ensures compatibility with
Boolean hardware.

. Staying in the analog domain
before output (removing analog
conversion).

. Transitioning to neuromorphic
code (image recognition, time
series classification).

. Requiring adaptive precision for
training and inference due to
precision issues.

¢ o 2-3 years
Extreme increase in power Energy per benchmark . 1,000x 5-10 years
efficiency application e Much larger; approach or exceed
. - 10-20 years
human brain efficiency
Tesla has
claimed
Reducing the ADC to DAC penalty z‘;‘é"t‘fzr‘]’gth

neuromorphic.

2-3yearsin
some cases
(80%-90%
chip running in
neuromorphic)

5-10 years
(90%+ chip
running in
neuromorphic)

10+ years (all

running 100%
neuromorphic)

Exploring alternative methods of
computation such as reservoir
computing, chaotic computing,
coupled oscillator computing, and
cellular state machine computing.
These approaches overlap with some

Most of these
technologies are in
the early stages of
research and
development, with

Joules/operation,
total energy per
program/algorithm,
average power (single W and

Unconventional computing
(avoiding digital)

. a commercial
lower, ~100 mW) aspects of CIM and offer potential for L .
L . . viability horizon of
significant improvements in energy
- 10+ years.
efficiency.
Stakeholders and Potential Roles in Project

Stakeholder Role

. Develop cost-effective neuromorphic devices. It is important to collaborate as needed so
that a software stack is also available for ease of use.

Product Manufacturers/Suppliers

. Act as system integrator to incorporate neuromorphic devices into large systems for wide

End Users/OEMs use; again, the software stack is available for heterogeneous system.

. Provide methods and techniques to facilitate ease of use of neuromorphic

Academia devices/architectures.

. Develop applications that efficiently utilize neuromorphic architectures.

. Provide methods and techniques to facilitate ease of use of neuromorphic
devices/architectures.

. Develop applications aligned with DOE mission that efficiently utilize neuromorphic

National Laboratories architectures.
. Act as both consumer and producer of neuromorphic technology.

. Act as testbed host and provider.

. Provide the support needed for a neuromorphic ecosystem: hardware, software,

Government e
applications, and workforce.

Required Resources ‘ Cross Collaboration Needs of Working Groups
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. Materials and Devices: Develop robust, energy-efficient
switching mechanisms; explore new memory and
memristive materials; integrate neuronal behaviors such
as non-linear response and spike plasticity with CMOS

. EDA tools and open-source design tools, startup and project technology.

seed funding, fablets and P-line facilities, and employee
training. . Algorithms and Software: Establish a more mature
programming environment for neuromorphic systems,
addressing the absence of robust software frameworks
and the potential need for new programming languages.

. Access to evaluation systems and testbed hardware. Well-
integrated solutions: chips, board, rack, and software. Access to
example designs/use cases.

. Metrology and Benchmarking: Standardize methods to

. Resources to hire new faculty and create new courses, ) A .
meaningfully compare different neuromorphic hardware.

certifications, and degree programs.

. Manufacturing: Optimize deposition and fabrication
processes for neuromorphic devices, ensuring CMOS
compatibility and integration of diverse materials.

. Resources for hiring well-trained students and postdocs.
Funding for larger projects and initiatives (center level).

. Access to latest information to help in outreach to public and
policymakers. Access to well-trained grad students and
postdocs for program development and management.

. Education and Workforce Development: Develop
educational programs and tools at various levels from K-
12 to college to foster expertise in neuromorphic
computing; promote interdisciplinary training and create
new open-source curricula to enhance recruitment and
awareness in hardware-related fields.

2.2.4 Nonvolatile Memory

The general memory architectures have evolved slowly over the last 40 years, e.g., with larger
and multi-level on-chip caches, and NAND memory gradually replacing traditional magnetic
disks. SRAM serves as a crucial component in this evolution, primarily used as cache memory
due to its higher speed compared to DRAM, despite its higher cost per bit and larger cell size
which limits its density. DRAM remains the primary volatile memory, given its combination of
speed, ease of manufacturing, cost per bit, and continued planar scaling. NAND, the primary
nonvolatile storage, has achieved an extremely high density, and its cost per bit is lower than
other memories. While DRAM and NAND are unlikely to be replaced with new upcoming
technologies, it is important to understand their strengths and shortcomings, to anticipate how
emerging memory technologies might be advantageously incorporated into the memory
hierarchy, depending on the application.

DRAM continues to scale via shrinking of the cell pitch size, but fundamental scaling issues
such as leakage current are forcing DRAM to move to 3D structure (Pires 2023). Additionally,
DRAM requires constant refreshing of its bitcells to maintain data, which consumes 30% of its
energy. Continued scaling of DRAM is only increasing the refresh rate and associated energy
use. DDR4 and DDRS5 are different generations of DRAM; DDR4, the 4™ generation, has a
refresh rate of 64 milliseconds (ms), which means it must renew its stored data every 64 ms to
maintain its integrity. DDR5, the 5" generation, has an improved refresh rate at 32 ms
(Vogelsang et al. 2022), allowing for more frequent data renewal. This increase in refresh rate
attempts to mitigate energy inefficiency, especially from standby power, yet the faster refresh
rate also presents challenges in maintaining the energy efficiency gains achieved through
advancements in scaling and design (Vogelsang 2010).

NAND energy efficiency improvements are made through geometric shrinking of the memory
cell and with multi-tier stacking of more memory cells. The primary issue for NAND is the access
energy cost, which is nearly 10 times that of DRAM at 100 pJ/bit (Pawlowski 2023). This value
does not include the cost of access through the interconnects, which adds significant overhead.
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Although DRAM and NAND will likely remain the dominant forms of memory, supplementary
memories can help reduce access and standby power consumption. Memories such as MRAM
(STTRAM), FeFET, ReRAM, and NRAM are viable next-generation technologies. Most of them
offer significant reduction in energy per bit and improved speed compared to NAND memory.
Compared to DRAM, these technologies offer similar speeds with similar read and write costs
and can be placed closer to the processing unit. Most importantly, they do not suffer from
memory volatility and can store data without power supplied to the cell, saving nearly 30% of
energy costs (or more if not accessed within 32 ms). This makes them particularly useful for
neural network applications (Veksler et al. 2020; Mukherjee et al. 2021; Chang 2021), high-
radiation environments (Nantero 2023; Marinella 2021), and loT devices where space and
power are limited (Saito et al. 2021).

A comparison of energy and performance metrics of conventional memory architectures and
next-generation NVM technologies is shown in Table 36. The energy impact factors compared
to NAND and DRAM are shown in Table 37. All technologies have the potential to improve
energy efficiency, read/write times, and durability compared to NAND; however, the biggest
issue they face in replacing NAND is density. STTRAM, NRAM, and RRAM have the potential to
improve on the energy cost per bit of DRAM. Not shown in the table are the improvements
through eliminating a refresh every 32 or 64 ms, which is at least 30% of the cost of DRAM
operation. They can also be monolithically integrated with logic, which potentially produces a
significant energy reduction cost over a DRAM-based GPU (An et al. 2022). Lastly, while SRAM
is highly energy-efficient, it demands continuous power for data retention and occupies a larger
area. In contrast, NVM technologies do not require constant power, allowing for either
monolithic integration or achieving densities up to 10 times greater than SRAM. This capability
from NVM technologies significantly alleviates the energy bottleneck associated with accessing
higher levels of cache or DRAM for additional memory (Gopireddy and Torrellas 2019; Hankin
et al. 2019).

Table 36. Comparison of Conventional Memory Architectures to Alternative Nonvolatile Memories.Due to

variation among reported data, these values should be taken as estimations. Sources: Marinella 2021; Pawlowski

2023; Bhavnargawala 2023; Yu 2016, Zhang et al. 2021; Vogelsang et al. 2022; Chatterjee et al. 2017, Sivan et al.
2019; Pan and Naeemi 2017.

NRAM NRAM

Parameter SRAM DRAM NAND STTRAM ReRAM (NVM) (Al NVM) PCRAM
Cell Area (F?) >100 <6 <4 6-20 <4if 3D 4 8 ~4
Voltage (V) <1 <1 >10 <1 1-3 <1-3 <1-3 1-3
Read Time
(nanoseconds <1 10-20 10,000 ~10 ~10 15 2.5 ~10
[ns])
W”t(‘:]:)'me <1 10-20 | 10,000 ~13 ~2-10 1,000 40 ~50
Retention N/A ~32 ms Years Years Years Years Years Years
2—-13 pJ/bit | 0.2 pJ/bit 0.4 pJ/bit
Read/Write ~18 5-10 >100 299 fJ/bit (lowest for read, for read, >100
Energy fJd/bit pJ/bit pJ/bit for write energy 30 pJ/bit 60 pJ/bit pJ/bit
states) for write for write
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Endurance
(cycles)

>1E16

>1E16

>1E4

~1E12

~1E12

~1E9 ~1E9

~1E7

Table 37. Energy Impact Factors of NVM Technologies Compared to DRAM and NAND.

Energy Impact

Energy Impact

Technology E(r;\er::y ::‘r’eBl;t Factor Compared Factor Compared to
v to DRAM NAND
STTRAM 0.299 pJ/bit (write) 16-32 333
ReRAM 2-13 pJ/bit (lowest 0.77-5 7.7-50
energy states)
0.2 pJ/bit (read), 25-50 (read),
NRAM (NVM) 30 pJ/bit (write) 0.17-0.33 (write) 3-50
NRAM (Al 0.4 pJ/bit (read), 12.5-25 (read), 17-95
NVM) 60 pJ/bit (write) 0.08-0.17 (write) '
PCRAM >100 pJ/bit N/A 1

Challenges and solution pathways for non-volatile memory

Support from processors through application space

The primary challenges for NVM integration are the infancy of applications that use it, the lower
endurance compared to DRAM, and the lower density compared to NAND. However, NVM
technologies do offer improvements in energy cost over NAND and approach energy cost parity
with DRAM, while avoiding overhead energy from refresh. Understanding which applications
NVM could be used for will influence the rate of adoption. Examples of such applications include
AlI/ML (Chakraborty, Gupta, and Suri 2020; Chang et al. 2021; Mukherjee et al. 2021), 3DICs for
compute-near-memory (Hosseini et al. 2022), and loT (Saito et al. 2021). In addition, NVM
provides new use cases in conditions where conventional memory may break down, such as
high temperature, high shock, and high radiation environments (Marinella 2021; Strenz 2020).
As these use cases become better understood by the community, circuitry and architecture
improvements (Mukherjee et al. 2021) and integration steps (such as CXL adoption) can
increase NVM adoption and reduce energy consumption of conventional memories through new
and hybrid designs.

Electronic Design Automation Tools and Process Design Kits for Application Space and Total
Cost of Ownership Analysis

EDA tools and PDKs are primarily tailored to existing technologies and standard architectures
(Mifsud and Constandinou 2023). However, as NVM technologies emerge, there is a pressing
need for updated EDA tools and PDKs to explore their potential applications more effectively.
These tools should accommodate NVM's unique signal behaviors and memory access
characteristics, which differ from those of traditional memories. Additionally, it is crucial to
develop EDA software that can simulate both the performance and the total cost of ownership
(TCO) for systems incorporating NVMs. This will allow designers to assess the feasibility and
benefits of integrating NVM into new circuit architectures.

U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 111



Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

Cost

While some commercial products use NVMs, the market is small due to higher cost and lower
density. DRAM and NAND are supported by multiple fabs across the globe, which keeps costs
low simply due to economies of scale. NVM scaling is required to keep up with advanced CMOS
devices, and this cannot occur without increased utilization to lower costs. One possible solution
would be to create an advanced fab that allows for production of 3D-integrated NVMs, where
speed and energy efficiency are improved over conventional devices. Another would be to
identify strong uses cases to increase production line adoption of NVMs and reduce cost.

Action plan for non-volatile memory

Table 38. Action Plan for Non-Volatile Memory.

Technology for Energy
Efficiency

. Non-volatile memory

. All NVM media types and memory controllers (e.g., CPU)

Technologies of Interest: ) ) ) )
. All NVM media cell and control logic types (ReRAM, NRAM, STTRAM, Spintronics, etc.)

Challenges Addressed Solution Pathways

. Negotiate NVM-friendly protocols with controller suppliers
and establish standards.

. Develop processor support to enable NVM for multiple
. Enable processor support. applications.

. Application space for new NVM. . Design libraries available for design integration (software

. Interface width becomes arbitrary. Operating frequency can be design to write protocol).

lower. Flexible error correction schemes. Temperature . Provide funding for fabs to integrate new processes.
sensitivity lower compared to DRAM or eFlash. Smaller footprint

compared to SRAM . Design NVM circuitry to handle specific variabilities such

as flexible error correction schemes.

. Integration of NVM processes and materials into fabs. . Target Applications for NVM. Focusing on specific use

. Data density issue, which depends on specific application; NVM cases can accelerate the adoption of NVMs. MRAM and
only impacts certain markets but can be used to supplement STTRAM are positioned to replace parts of DRAM in
DRAM/NAND. environments requiring durability and in Al systems to

enhance power efficiency, particularly beneficial for edge
devices where space and power are constrained. NRAM,
offering competitive read speeds and greater density, is a
viable replacement for SRAM in Al applications. Strategic
circuit and system co-design is essential to address the
inherent challenges of these devices.

. ReRAM may be sensitive to temperature for memory window,
read-write noise.

Major Tasks/Milestones Metrics Targets Timeline
DAX (Direct Access) is in
Windows/Linux, ongoing
. deveI(?pment, growing, other Software enablement for data centers
Software (memory tiering) emerging memory. Processor and hvperscalers 4 years
direct vs. CXL, must be o
incorporated in memory-
tiering software.
Access protocol: communicating Education of AMD, ARM,
characteristics to key players Microsoft, Intel, IBM DRAM replacements 4 years
Comparative reliability, failure rate,
Control suppliers: product Fab availability and costs. cost to DRAM. TCO competitive. 6-7 vears
demonstration of NVM Demonstration of reliability. Thermal management requirements. y
Device lifespan.
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Integration of on and off-chip
components including
chiplets and 3D ICs. System
performance is modeled and
benchmarked using SPEC,
evaluating against competing
technologies.

Design package for NVM adheres to
budget constraints and standards. It Approximately 6—
includes chiplet designs for UCle, on- 10 year timeline
chip SRAM replacement, and off-chip for monolithic
DRAM/NAND/NOR as supplemental implementations.
memory, targeting specific
applications.

Co-design of circuitry to enable
next-gen NVM

Initial development phase for
FEOL/BEOL integration: fablet technologies that may not Next-gen NVM 5-10 years
reach widespread production

Stakeholders and Potential Roles in Project

Stakeholder Role
End Users/OEMs . Provide software support for new memory types.
. Develop modeling and benchmarking methodologies.
Academia )
. Provide workforce.
National Laboratories . Perform radiation hard tests.
Government . Provide exploratory fabs where new materials can be introduced and tested.
Required Resources ‘ Cross Collaboration Needs of Working Groups
. Software: New architectures; power requirements will
require new algorithms.
*  Fablet for BEOL processing out of “standard” fabs. e Materials and Devices: Continue development at bit level.
e Overall migration of filesystem models, support libraries, and e Advanced Packaging and Heterogeneous Integration: New
programming constructs. architectures require new cooling and interconnect
. Education on new materials, process integration, and methods.
contamination controls. e  Power and Control Electronics: New power delivery
requirements (off- and on-chip monolithic/stacked
methods).

2.2.5 Domain-Specific Architectures

Domain-specific architectures (DSAs) and ASICs implement alternative architectures designed
to reduce energy and speed overhead for some workloads. Although DSAs and ASICs only
complete a handful of tasks, they are incredibly fast and energy-efficient compared to the
conventional CPU architecture for those tasks. For example, some microprocessors today
include domain-specific processing sections dedicated to tasks like audio and video coding and
decoding.

Specific examples of DSAs with significant energy savings over CPUs are the graphics
processing unit (GPU), tensor processing unit (TPU), and field-programmable gate array
(FPGA). The GPU has a fundamentally different architecture than the CPU does, with large
memory banks for massive parallel computing capabilities at significant reduction of energy over
the CPU. Google created the TPU after noticing that speech searches were increasing and
threatened to double their data center computational power use (Jouppi et al. 2018). The TPU
was implemented as a coprocessor for speech matrix multiplication, boasting 30—80x energy
savings over CPUs for speech searches. FPGAs provide a dynamically reconfigurable
accelerator architecture, allowing the hardware to adapt and accelerate various functions like
search algorithms, signal processing, matrix multiplication, and machine learning based on
changing workload demands (Putnam et al. 2016). Additionally, FPGAs can serve as a
development platform for designing custom ASICs.
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DSA and ASIC designs generally follow the strategy outlined by David Patterson and John
Hennessy in their book Computer Architecture: A Quantitative Approach (Hennessy and
Patterson 2019) to improve processing speed and significantly reduce energy per application:

¢ Minimize the distance that data is moved through hardware and compiler design.

¢ Invest the savings of on-chip real estate from simplified domain-specific microarchitecture to

add arithmetic or memory units depending on which is needed most.

e Through a priori knowledge of the target application, utilize parallelism that is easiest for the
programmer.

o Use the smallest data type and size needed for the problem.

o Utilize domain-specific programming languages that are already in use on other systems to
reduce complexity of programming.

Table 39 shows a comparison of some recent domain-specific architectures utilizing
understanding of the application to create optimized architectures (TPU, FPGA, Anton).
Significant gains can be made using domain-specific architectures in place of the conventional
CPU/GPU. This is not an exhaustive list and should be used only as supporting evidence for
DSAs/ASICs as an important strategy for large use applications.

Table 39. Performance Comparison of Some Recent? Domain-Specific Architectures

Commercial Commercial Energy Timeline for Lab
Technology Specified Baseline Energy Benchmark Savings Scale
Benchmark e .
Group Technology Performance Product Energy Multiplier Demonstration
Performance (X Factor) (TRL 6, years)
Domain
Specific Google TPUV1 92 TOPS/W Haswell CPU | 2.6 TOPS/W 35 0
Architectures
Domain FPGA
Specific (embedded 1.2-30.8 ARM 57 CPU 4.5-221 3.8-7.6 0
. .. mdJ/frame mJ/frame
Architectures | computer vision)
. ~150-100K Watt- 3,300-
Domain hour/microsecond | NVIDIA A100 | 1,400,000
Specific Anton 3 o 14-22 0
, (Wh/us) GPU Wh/us
Architectures . . . .
Simulation Simulation

@ Sources: Jouppi et al. 2018; Qasaimeh et al. 2019; Shaw et al. 2021

Challenges and Solution Pathways for Domain-Specific Architectures
Cycle Design Time and Simulation

Designing a new chip takes significant time and resources. Allowing for all companies to utilize
design software and simulation may enable application-specific architectures suited to specific
needs and spur innovation. Historical methods have involved understanding the use case with
an existing architecture, then creating iterations of the hardware through design, chip creation,
and testing to make an improved device. Enhancing companies’ ability to assess device
performance through simulations instead of multiple physical test iterations will significantly
reduce device costs and time to market. Additionally, adoption of UCle could allow for easier
mixing and matching of different IP components for specified use cases.
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Use Cases and Total Cost of Ownership

Creating a custom chip with a new design-specific architecture will require new masks,
interconnect design, different IP, and various other factors that together may cost tens of
millions of dollars. For DSAs to be adopted on a wide scale, more use cases must be identified
where companies can realize significant impacts on total cost of ownership (TCO) or device
power, thus providing justification for these investments. As noted earlier in this section, Google
developed the TPU because speech searching trends indicated a future doubling in data center
computation (Jouppi et al. 2018). In addition, image recognition in power-limited applications,
such as smartphones and autonomous vehicles, led to the development of an FGPA
architecture (Shaw et al. 2021; Shankar 2022). These examples illustrate that identifying
applications that could benefit from reduced power consumption and faster processing can
continue to push DSAs into the mainstream and significantly reduce energy consumption in
specific use cases.

Table 40. Action Plan for Domain-Specific Architectures

Technology for Energy Efficiency | DSAs and ASICs

. Large-scale technologies addressing a specific task (e.g., Google’s Tensor Processing Units
[TPUs], Meta’s Meta Training Inference Accelerator [MTIA]).

Technologies of Interest: . Domain-specific, high-performance, large-scale scientific compute tasks such as climate
simulation or molecular dynamics. Can be applied to different products (CPUs, GPUs, ASICs,
FPGASs, etc.) or applications (ML, communication networks, edge computing [CPUs, GPUs,
Neural Processing Units, Bluetooth]).

Challenges Addressed ‘ Solution Pathways
. Operational efficiency . Identify large use case applications where development,
) production, and debugging of DSA/ASIC is cost effective
*  Run-time performance for superior performance and energy efficiency.
*  Realtime requirements (latency) e Ensure proper use of fidelity requirements.
e IPprotection e  Explore potential solutions, including cheaper mask sets
. Cost or silicon production sleds, reasonably priced IP available
o for reuse, compiler frameworks that can be leveraged for
¢ Make sure approaches not only meet an application's new technologies, better CAD tools for silicon design and
functional requirements but also ensure solutions are achieved debugging, and increased output of skilled engineers
within a feasible timeframe. from academic institutions.
Major Tasks/Milestones Metrics ‘ Targets Timeline

Large-scale applications or
tasks that do not run well on 2-3 applications 1 year
existing hardware

Power improvement with iso-

Identify use cases or
applications requiring DSAs

Strawman design for killer app(s) performance, or improved 10 times or greater 1Oﬁza; for
performance for iso-power PP
EDA tools tailored for quicker DeS|gn-bu_|Id-test 2 times or greater reduction in time ~2 years
workflow cycle time

Stakeholders and Potential Roles in Project

Stakeholder Role

Product Manufacturers/Suppliers | ®  Design silicon and software

. Implement in specific markets

End Users/OEMs ) o
. Define markets and applications
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. Develop fundamental design concepts
Academia . Accelerate ecosystem growth

. Foster workforce development

. Train senior student/postdoctoral
National Laboratories
. Develop metrology and standards

. Incentivize the ecosystem

Government o .
. Conduct Outreach (communication to public, members of Congress, etc.)
Required Resources ‘ Cross Collaboration Needs of Working Groups

. Government incentives, clear return on investment and total

accessible market, and industry momentum.
. Demonstrator/prototype chips/products, evaluation testbeds, )

access/information about new technologies, and e Algorithms and Software: Collaborate to address DSS.

conferences/workshops to bring end users together. e  Metrology and Benchmarking: Benchmark DSAs against
e Access to the latest information about advantages, etc., to help other solutions.

in disseminating to the public and policymakers. e  Power and Control Electronics: Examine adaptive power
e Access to EDA tools, prototype hardware, and foundries (at management in a heterogeneous compute environment.

scale). e  APHI: Develop possible interaction with 3D architectures
. Funding programs. because DSAs may require this technology.
e Access to well-trained graduate students and postdocs for e Manufacturing Energy Efficiency and Sustainability:

program development and management. Collaborate to reduce cost and number of layers required,

cost of packaging and heterogenous integration, and

e Resources for outreach and talent development. fabrication time.
. Engineers with skills for ASIC and software development,

hardware/software co-design of systems. Consider degree

programs or certificates in ASIC design and co-design.

2.2.6 Instruction Set Architecture

An instruction set architecture (ISA) serves as the crucial software interface to a computer's
hardware, enabling software to command the physical components. It defines the supported
codes or instructions that a processor can execute, bridging the gap between hardware and
software. Commercially significant ISAs include Intel's and ARM's proprietary sets and the
open-source RISC-V, all vital for CPU operations. Higher-level virtual machine ISAs like the
Java Virtual Machine (JVM) and NVIDIA's Parallel Thread Execution (PTX) provide a further
layer of abstraction, primarily used in GPU computing.

While creating a new ISA for novel hardware is technically possible, the substantial software
ecosystem required makes it increasingly impractical. Instead, enhancing existing ISAs for
energy efficiency and integrating them into DSAs is more commercially viable. This approach
taps into existing development tools, speeds up time to market, and cuts costs, while aligning
with the energy efficiency goals by optimizing data handling and computational tasks more
efficiently in DSAs.

Challenges and Solution Pathways for Instruction Set Architecture
Power Management

ISAs face critical challenges in managing power efficiently across varying workloads. Traditional
ISAs are not always optimized for power conservation, leading to excessive energy
consumption during idle or low-activity periods. As systems become more complex and energy
efficiency becomes a greater concern, particularly in mobile and embedded devices, the need
for effective power management strategies becomes paramount. Additionally, existing ISAs may
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lack the flexibility to dynamically adjust power settings based on real-time processing demands,
resulting in suboptimal power usage.

To address these challenges, incorporating explicit power management instructions into ISAs
can significantly enhance energy efficiency. Such instructions would enable processors to adjust
their power usage dynamically, ensuring that energy consumption is aligned with the workload
requirements. For example, lower precision numeric formats could be employed to reduce the
memory bandwidth requirements for certain applications like neural network processing, thereby
conserving energy. Additionally, designing ISAs with built-in power-saving modes, like those
seen in ARM processors, can minimize power consumption when devices are not in full use.
Integrating these power management capabilities into the ISA design would help in reducing
overall energy expenditure while maintaining performance (Keller et al. 2017).

Compute-in-Memory

The integration of CIM technologies within traditional ISA frameworks is a significant challenge.
CIM aims to reduce the energy and latency costs associated with data movement by performing
computations directly where data is stored. However, adapting software to fully leverage CIM
capabilities can be complex due to the need for significant changes in program architecture and
memory management. Additionally, traditional ISAs may not support the operations needed for
effective CIM, which limits the potential gains from this technology.

To overcome these obstacles, ISAs could be extended to include specialized instructions that
support compute-in-memory operations. This approach would involve developing intermediate
representations, such as tensor dataflow graphs, to optimize data layout and computation
strategies directly within the memory array (Wang et al 2022). Such innovations would not only
facilitate the integration of CIM into existing system architectures but also enhance the efficiency
of data processing tasks. Moreover, incorporating CIM transparently within the ISA could shield
programmers from complex hardware details, making it easier to develop applications that
benefit from in-memory computing. Collaborative efforts between hardware designers, software
developers, and standards bodies are crucial to standardize and propagate these
advancements across the industry.

Table 41. Action Plan for Instruction Set Architectures.

Technology for Energy
Efficiency

Instruction Set Architecture

Technologies of Interest: x86, RISC-V, FPGA, GPU, and other CPU

Challenges Addressed Solution Pathways

. Involve ISA developers in the definition of PIM functions.
. Use cache control structures to match PIM granularities.

. Avoid wasted power via control mechanisms to enable or
e Power management integration disable speculative operations based on hit rates.

e  Compute-in-memory integration e Lower fidelity requirements to minimum. Int8, if it can be
used, is significantly less energy intensive than FP32.

. Require improved understanding of cache line minimums.
Possible to increase or decrease size dependent upon
need.

Major Tasks/Milestones Metrics ‘ Targets Timeline
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. Memory specification Cache memory (HBM) or main Currently

Memory PIM functions with PIM memory (DDR, LPDDR) underway
High-level language

Improve compiler efficiency compilation closer to hand- All operating systems and applications Ongoing

coded assembly

On-the-fly ability to enable or
Speculative hit rate monitors disable speculative functions CPUs, GPUs, FPGAs, etc. 4 years
based on success hit rates

Memory accesses allow
Cache line efficiency granularity closer to the CPUs, GPUs, FPGAs, etc. 4 years
application requirement

PIM instructions removed

ISAs that comprehend PIM from xPU if redundant with CPUs, GPUs, FPGAs, etc. 4 years
memory PIM
Stakeholder Role

Product Manufacturers/Suppliers | Improve energy efficiency of ISAs, caches, and memory accesses.

End Users/OEMs e  Consider TCO in performance analyses.
Academia . Revise compiler, reinterpreter writers to consider power utilization.
Government . Implement algorithms to consider power, ISA issues.
Other . Develop standards for memory access granularity, PIM functions.
Required Resources Cross Collaboration Needs of Working Groups
e Power analysis tools for ISA definition, compiler writing. *  Algorithms and Software: Revise compilers, interpreters,
etc., need additional work to improve energy efficiency of
. Benchmarks that calculate TCO factors such as power and instruction streams and data accesses.
cooling.

) e  Education and Workforce Development: Reeducate
e Power models defined before command sets and access compiler and interpreter writers are needed to consider

granularity are defined. energy use as part of the optimizer functions.

2.2.7 Electronic Design Automation for Circuits and Architectures

EDA is critical in the field of microelectronics, where circuit designs and layouts are meticulously
planned and executed. As energy-efficient microelectronic devices continue to miniaturize and
increase in complexity, the challenges in IC design have escalated, involving intricate design
rules, evolving circuit sizes, diverse masks, specialized measurement needs, and continuously
developing processes. EDA tools are instrumental in managing these complexities by facilitating
the design of circuits, devices, and systems that meet performance standards and
manufacturing requirements.

A key component of EDA is design-technology co-optimization (DTCO). This process involves a
collaborative effort between designers and process engineers to optimize a circuit or system’s
performance, power efficiency, and area density, while also aiming to reduce process
development time and costs (Yuan 2022; Synopsys 2023a). DTCO enables teams to refine
process technologies to achieve ambitious targets such as precise linewidths, specific dopant
profiles, high-quality films, and robust electrical benchmarks.

The DTCO process begins with the development of the fundamental transistor or circuit
component. Following this, a comprehensive set of design rules—usually geometric in nature
(Ferguson 2018)—is established along with the requisite process steps. This ensures that the
device’s performance is optimal and that it can be manufactured with a high yield. These design
rules and process steps are encapsulated in what is known as the Process Design Kit (PDK).
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The PDK, used alongside EDA tools, allows for the precise creation of energy-efficient device
and interconnection layouts essential for modern circuits.

One critical aspect of EDA and PDKs, aside from their ability to support circuit and architecture
design, is their ability to simulate the behavior of the individual circuit components as well as the
full device. It is important to know that each circuit component behaves as indicated and each
device is performing at the expected speed and power. EDA creates a 3D model of the circuitry
that can then be simulated to show device performance. This can enable manufacturers to
reduce parasitic early in the design process rather than later when the device is near
production, leading to significant cost savings (Synopsys 2023b).

While EDA and PDK tools do not result in direct savings on the semiconductor device itself, the
ability to leverage them for circuit, device, and packaging components will allow for energy
savings in other ways:

e Enabling rapid prototyping and testing through advanced simulation tools ensures devices
function correctly and are manufacturable without extensive physical trial and error. This
efficiency not only saves resources but also enhances manufacturing energy efficiency and
sustainability.

e Utilizing EDA tools to refine digital twin architectures in Al/ML applications can lead to more
efficient processing and energy use.

o Employing EDA tools to conduct preliminary energy metric testing helps set standards for
computing energy per application, promoting energy-efficient designs.

¢ Implementing EDA tools helps reduce unwanted parasitic effects in circuit designs,
improving overall energy efficiency and device performance.

¢ Incorporating alternative materials for interconnects in the PDK, such as graphitic carbon,
CNTs, or advanced devices that are naturally more energy-efficient, such as TFET or GAA,
will save energy.

¢ Implementing EDA tools facilitates the creation of 3D and other innovative architectures that
inherently improve energy efficiency by optimizing space and reducing interconnect lengths.

¢ Reducing the effort needed for design and verification tasks through automated and more
intelligent EDA tools will lead to faster development cycles and lower energy consumption
during testing.

Challenges and solution pathways for Electronic Design Automation for Circuits
and Architectures

Architecture Design for the Most Energy-Efficient Layout

EDA tools play a crucial role in identifying and managing the parasitic components of resistance
and capacitance (RC) delays in circuit designs, as highlighted by Thiruvengadam and Borges
(2022). These tools are instrumental in optimizing circuit structures to enhance signal
transmission and overall performance. However, EDA does not necessarily provide information
about either energy per bit performance or standby power (Bhavesh et al. 2022), nor is it
necessarily designed primarily for energy efficiency. Power optimization is needed for all
aspects of the design flow to reduce overhead (Reis 2015). One solution is to have specific
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power constraints of the device added into the system with energy per bit and energy per
application integrated into the EDA/PDK software. Utilizing ML (Bhavesh et al. 2022; Garcia-
Martin et al. 2019) or Al tools that have been already developed for EDA (Hilson 2023) for
power performance standards such as energy per bit for read/write of memory, along with
energy per application, could improve the overall energy efficiency of the architecture with little
or no compromise in performance.

Verification Bottleneck

Device verification represents a significant challenge for manufacturers, with any major issues in
the later stages of product development potentially adding substantial costs and extending the
time-to-market (Synopsys 2023b). The conventional approach has been to perform verification
late in the IC development process. Moving verification earlier in the process (i.e., with
simulation-testing) can uncover performance and function issues that otherwise would not arise
until later stages (Aboagye, Patel, and Vig 2014; Synopsys 2023c). EDA providers such as
Synopsys® and Cadence® already have this capability. Making early verification more
widespread will help prevent unexpected costs and reduce the environmental harm from wasted
resources.

Process Design Kit With Sufficient Information for Electronic Design Automation

For the EDA software to construct a device—e.g., an architecture such as DRAM or a processor
unit such as an ALU—it must rely on the specifications provided by the PDK. Each PDK has
design rules, constraints, schematics, circuit models, and more (Worthman 2014). For optimal
design and simulation, the PDK must provide the expected modeling data to the designer for
their analysis with EDA. Developing a set standard for what information a PDK must provide
could enable better simulation and energy consumption analysis. Such a standard would also
benefit designers trying to model newer energy-efficient devices that may not have the same
market share or popularity as the incumbent technologies.

Circuitry Parasitics

Circuitry parasitics, primarily resulting from interconnects and components within a circuit, are
responsible for a significant portion of energy consumption in microelectronics, often accounting
for more than 80% of the total energy use. Parasitic capacitance and resistance in these
elements can lead to energy losses, especially during the transmission of signals. To combat
these inefficiencies, it is crucial to develop PDKs that incorporate novel materials and innovative
designs. These might include CNTs for interconnects, energy-efficient devices like MRAM or
TFETSs, optimized SRAM architectures, or 3D ICs. Such advancements can significantly reduce
parasitic losses and, consequently, the overall energy consumption in microelectronic devices.

Open-Source Electronic Design Automation and Process Design Kits

The high cost to purchase and use EDA and PDKs impedes academic research groups and
small companies from developing new and next-generation energy efficient technologies (Chen
et al. 2021). For these stakeholders to provide innovative and commercially relevant designs,
open-source PDKs such as SKY130 (Chen et al. 2021) and open-source EDA platforms such
as DoD’s OpenROAD (Moore 2018) are needed to lower design costs.
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Table 42. Action Plan for Electronic Design Automation Improvements.

Technology for Energy
Efficiency

Electronic Design Automation for chip development

. Design and simulation software (i.e., EDA and PDKs)

Technologies of Interest: ! e e
° Reduction of circuitry parasitics

Challenges Addressed Solution Pathways

. Work with vendors to develop application-specific EDA to
improve efficiency.

. Implement simulation will require higher-level computing
languages, which can help solve the current verification

e  Industry focuses solely on reducing design time when bottleneck.
developing EDA and PDKs. Tools are needed to infer the most e Accelerate EDA tools using Al.
energy-efficient solutions more effectively. Current approaches
usually require a human expert in the loop. e Incentivize (using government incentives) private EDA
) o vendors to cooperate with researchers on PDK and even
. Better algorithms, performance, and energy efficiency are all EDA more broadly.
needed.
) ) ) ) ) e Move from rectilinear to more open (e.g., curvilinear)
o EDA is becoming very expensive, though DARPA is working on device shape to help energy bottlenecks and be thought
an open-source approach to reduce cost. of as 0.5D expansion.
¢ Co-design is needed for PDK and EDA tools to improve power e Investigate and develop PDKs for novel less parasitic
modeling. (EDA is not currently aware of PDK.) devices such as a TFET with lower leakage, reducing

bitcell variability, etc.

. Implement interoperability between tools to leverage the
specialties of different vendors without having to use
custom scripts or error-correction mechanisms.

Major Tasks/Milestones Metrics Targets Timeline
Ease of use for EDA/PDK SIE) CEEIIEIS
L ) . are already
for better circuit design Lines of code . .
; Compilers to translate available, but
(translating from user language (C vs. Python) .
) quality needs
to higher-level language) .
improvement.
Demonstrator of Design
Technology Co-Optimization
(DTCO) flow to optimize Sandia Sub-threshold swing, Vmin 20 mv/dec (1/3 Of.MOSFET)’ 12 months
. ) 3x reduction
TFET device for memory design
to improve energy efficiency
EDA simulation (circuitry
parasitics reduction):
D f EDA tools f
e.mons.trator ° tools for Energy-delay product 5x—10x reduction 1-2 years
simulation and performance
analysis of memory design
energy efficiency
EDA and PDK Power simulation, photonics, EDA tools to be aware of 1-2 vears
co-development advanced packaging PDK for utilization y
Stakeholder Role
Product Manufacturers/Suppliers | EDA tool vendor (Synopsys, Cadence, Siemens, etc.)
End Users/OEMs Industry members (fabless and IDMs) and government labs designing their own chips
National Laboratories Collaborative interaction with Sandia to model/simulate TFETs

Required Resources Cross Collaboration Needs of Working Groups
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. Materials and Devices: Complete characterization of
. EDA tools for 3D integration, semi-custom SRAM array design, transistors needs to be in the PDK tool.

and PDK of CMOS platform. . Algorithms and Software: Develop lessons regarding high

. Inputs on specs of the components for which new cost and long time needed for experts. EDA tools need to
circuits/architectures are implemented. Review and be developed by analogy to processing units: general
assessment based on industry's/lab's own designs. purpose, to broadest application (e.g., graphics), to

) - . licati ific.
. Device descriptions and measurements; equivalent of BSIM application specific

(Berkeley Short-channel IGFET Model) models for circuit . EWD: Help with curriculum development for developing
simulation. application-specific experts that emphasize energy
efficiency, further parasitics reduction.

2.2.8 Conclusion for Circuits and Architectures

The Circuits and Architectures chapter highlights the vital importance of prioritizing the
development of new circuitry designs to bolster energy efficiency. Domain-specific architectures,
in-memory computing, and neuromorphic technologies have emerged as promising solutions to
lower energy consumption, particularly in computationally intensive workloads.

Meeting these targets requires robust collaboration across different fields to design new circuits
and architectures capable of reducing memory access costs and improving power delivery. This
collaboration can be enabled by enhancing EDA tools to streamline device integration and
performance simulations, strengthening instruction set architectures to support memory pooling,
and developing standards to incorporate chiplet-based designs.

To rapidly translate these innovations into real-world impact, EES2 has set TRL 6 as a baseline
to accelerate the deployment of new designs and architectures. Achieving this baseline
demands significant investment in co-design strategies, advanced EDA software, and standards
to ensure seamless integration across the computing stack. Dedicated cross-collaboration
among various stakeholders will be essential to ensure these efforts deliver transformative gains
in energy efficiency.
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2.3 Advanced Packaging and Heterogeneous Integration

As transistor nodes shrink below 20 nm, the cost benefits diminish, shifting the focus toward
advanced packaging (AP) and heterogeneous integration (Hl)—collectively referred to as
APHI—as essential methods for enhancing energy efficiency and device performance. The
focus of APHI is on a variety of different approaches for packaging chips together. Until recently,
integration technologies focused on planar chip interconnects, chip-to-chip connections, and air
flow and heat sinks for thermal management. In the shift to APHI, new technologies such as
2.5D and 3D geometries, as well as advanced interconnect schemes and new thermal
mitigation strategies between stacked chips, are some of the key energy efficiency approaches.
Multiple semiconductor organizations, including MAPT, IRDS, IEEE, and the Semiconductor
Industry Association (IEEE IRDS 2023; SIA 2022), have stated that HI will be the key
technology driver for at least the next decade due to its performance and energy efficiency
improvement potential.

Energy efficiency of logic and memory operations have not improved at the same rate. Memory
technologies have improved more rapidly than logic operations in terms of energy efficiency,
largely due to significant advancements in memory design and integration techniques. Logic
operations, involving arithmetic instructions, have improved by approximately 2x to 4x
depending on the calculation type (Jouppi et al. 2021). In contrast, memory technologies like
HBM2 and GDDRG6 have seen a 6-foild increase in efficiency compared to older DDR3/4
standards (Vogelsang 2010; Smith 2022; O’Conner et al. 2017). However, memory operations
still exhibit an energy cost nearly 4x higher than that of the most energy intensive logic
operation, primarily due to the energy costs associated with data transfer through interconnects.
For instance, accessing DDR3/4 memory is about 1,300 times more energy-intensive per bit
than logic operations are. Advances in HBM2 and GDDRG6 have reduced this disparity to about
250x to 350x through packaging improvements, yet accessing memory remains significantly
more energy-costly than performing logic operations (Jouppi et al. 2021).

The Circuits and Architectures chapter emphasized computational strategies to minimize data
transfer, whereas this chapter on APHI will explore next-generation interconnect technologies.
These technologies aim to enhance data transfer efficiency and incorporate thermal mitigation
strategies to lower energy consumption by reducing chip parasitics and secondary energy
expenditures.

An instruction in microelectronics refers to a command given to a computer processor to
perform a specific operation. At the instruction level, various technologies discussed in the APHI
chapter have the potential to significantly impact energy consumption. Innovations such as
carbon nanotube interconnects decrease parasitic losses, while approaches like 2.5/3D
interconnects and chip stacking technologies shorten the distances between interconnected
components. These advancements collectively aim to reduce the overall energy requirements of
memory and logic operations, demonstrating a crucial step toward more energy-efficient
microelectronic systems.

Working Group Methodology

APHI technologies are at the forefront of performance improvement in microelectronics today
and align well with the EES2 goal of reducing the overall energy consumption of
microelectronics. The APHI working group proposed nearly 30 technologies, divided into six
groups, that tackle both the energy consumed during operation and the secondary costs of
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cooling (see Table 43). The proposed technologies’ energy efficiency factors (compared to
incumbent technologies) are found in their respective sections throughout the chapter.

Certain technologies discussed in the Circuits and Architectures chapter are discussed in further
detail here because they also have implications for APHI. Compute-near-memory, for example,
is enabled through interconnect and thermal management technologies. Additionally, EDA,
while not a physical device, can have significant impacts on the system package through co-
design and with initial energy consumption simulations.

Table 43. APHI Technology Groups and Technologies of Interest

Technology Group Specified Technology

Graphene, CNT (SWNT, MWNT)
Next-Gen Interconnects, all levels Ru, Ir, Rh

Optical

Carbon based

2.5D-Bridge Chip, EMIB/Foveros, Interposer, Chiplet
Foundational 2.5/3D Interconnect Through silicon via

Technologies Monolithic 3D (Monolithic Inter-tier Vias)

Hybrid Bonding (Cu-Cu)

UCle

Vcache

Application-driven 3D Integration MIV stacked ReRAM

DRAM Cache

LMP Metal Solder with polymer (Indium-based)

Advanced Thermal Interface Materials Nanostructure engineering to increase thermal surface area contact
(TIM)

CNT based thermally conductive matrix

Graphene based conductive matrix

Energy per bit simulations
EDA for Systems Design (SOIC, SiP, Architecture level PDKs

e STCO
Thermal Co-Design

Figure 34 shows the technologies of interest with their potential energy efficiency improvement
factors and timelines to TRL 6, as determined by the working group. For more information on
TRLS, refer to section 1.5.
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Figure 34. Potential efficiency improvement factor and timeline for selected technologies of the APHI working
group

Key Takeaways

Table 44 summarizes the most significant identified energy efficiency opportunities that can be
achieved through advances in APHI.

Table 44. Key Takeaways for Energy Efficiency Opportunities in APHI.

gigtgology ‘ Key Opportunities for Energy Efficiency
e Transition to 3D hybrid bonding to surpass the limitations of
copper microbumps, enhancing energy efficiency with reduced

signal delay and improved bandwidth.

e Implement copper-to-copper and dielectric bonding for submicron
pitch sizes, resulting in significant energy savings compared to
traditional methods.

Interconnects for
2.5/3D stacking

o Utilize advanced packaging techniques for legacy nodes to
improve energy efficiency.

e Advance thermal interface materials that offer lower thermal
resistance and obviate the need for polymer adhesives, leading to
better heat dissipation and energy efficiency.

Thermal Interface
Materials

e Develop novel cooling technologies capable of managing the heat
generated by high-density chip stacks, thus reducing the energy
required for cooling operations.

Advanced system
cooling technologies
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e Advance optical interconnects to sidestep parasitic capacitance
for increased bandwidth and lower energy per bit through

Alternative '";;;,,—3 T component miniaturization and monolithic integration.
interconnect G : . .
e "o TmTT o - e Explore carbon-based interconnects like CNTs to reduce resistive

losses and improve thermal conduction over copper, aiming for
reduced RC delays and enhanced energy efficiency.

e Enhance energy efficiency through EDA that facilitates advanced
integration/packaging co-design and initial energy consumption

simulations.

Packaging EDA
ackaging e Encourage the use of system technology co-optimization (STCO) for

predictive modeling and optimization of energy use in packaging
designs.

Grand Challenges

Achievement of the identified energy savings opportunities with APHI requires overcoming the
following major challenges:

e Creating an R&D fablet open to universities and small businesses for feasibility testing to
address challenges associated with APHI technologies and workforce development.

¢ Implementing UCle as the standard interconnect to facilitate miniaturization, increase
bandwidth, accommodate legacy nodes, and resolve supply challenges.

o Developing and testing novel devices that may not currently be CMOS compatible but
can be monolithically integrated.

e Exploring innovative thermal interface materials, like carbon-based matrices and
topographically engineered interfaces, to effectively address thermal management
challenges.

¢ Reducing memory access costs and heat generation, primarily for SRAM and DRAM,
through innovations in interconnect technologies, including alternative materials and
mechanisms.

2.3.1 Carbon Nanotube-Based Interconnects

Interconnect technologies currently use ~80% of all on-chip power (Karkar et al. 2016). While
3D ICs will significantly reduce this high energy consumption, investigations into alternative
materials are paramount. Currently, copper is the material of choice for interconnects at all
levels, but as devices continue to scale, copper’s resistivity, grain boundary effects, and thermal
issues will increase. Additionally, copper electromigration is an issue as line widths are
decreased (Mittal and Lin 2017). The APHI working group proposes carbon nanotubes (CNTSs)
as one possible solution for moving beyond copper interconnects.

CNTs were introduced in the Materials and Devices chapter as a possible new transistor
technology. As the quality of CNT production improves, along with other carbon allotrope
production technologies (such as wet-based chemistry methods, deposition methods, and
graphitic sheet transfer technologies), research priorities should include investigation of
alternative opportunities for carbon, such as interconnects and interposer technologies, for
improvements in energy efficiency and performance.
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CNTs and graphene provide significant reduction in resistance and capacitance, reducing RC
delays without the need for as many repeater amplifiers; they also provide increased thermal
conduction over copper, likely reducing localized hot spots (Alam et al. 2011; Mittal and Lin
2017). One important property of CNTs and graphene is the ability to carry significantly higher
current density than copper does at smaller sizes (Soldano, Talapatra, and Kar 2013), opening
up CNTs for power distribution, vias, and possibly smaller chips. Table 45 provides a
comparison of simulated graphene layers, measuring resistance, capacitance, and correlating
impact factors of CNT bundles compared to conventional copper interconnects.

Table 45. Comparison of Simulated Graphene Layers and Resistance, Capacitance, and Correlating Impact
Factors of CNT Bundles Compared to Conventional Copper Interconnects

Technology Specified Baseline Energy (ézr:;:emr:ril Beni%mg‘rirg:ér Impact Tlmeelm
Group Technology Performance Product Sy ——— gy Factor (years)
Resistance: Cobper Resistance: 16
Graphene 600 Q/um PP 950 Q/um :
(simulation 20 Capacitance:
layers) 0.08 femtofarad/ Copper Coa p;e;cfllt:a/\ncr::: 2.1
micron (fF/um) ) H
Carbon-Based CNT Copper
10-15
Interconnects (simulation) 40 (simulation) 120 3.0
Capacitance Capacitance
lrig';(';ﬁ::ét 100 pm: 12.6 fF Cobper 100 ym: 14.31F | ., o
(Simulation) 500 um: 62.8 fF PP 500 um: 71.4 fF Al
1,000 ym: 142.3 fF 1,000 um: 184.4 fF

Although graphene and CNT bundles provide improvement over copper, the implementation of
these materials as interconnects is still in its infancy. The working group identified no current
device or prototype using CNT interconnects, only simulation or initial rudimentary test
structures. For example, graphene interconnects with 7nm technology (Wang et al. 2017)
showed an 8% improvement in the energy delay product via EDA simulation, with more room for
improvement.

Challenges and Solution Pathways for Carbon Nanotube-Based Interconnects
Contact Resistance

Contact resistance measures the impedance electrons face when transitioning between
different media. For carbon-based interconnects, the contact resistance is dominated by metal-
carbon distance, adhesion to the metal contact, and the metal work function. Researchers have
employed various techniques to reduce this resistance, including using joule heating to
eliminate interfacial impurities, forming metallic-carbon interfacial layers, and applying ultrasonic
nanowelding. Despite these efforts, the best achievable contact resistivity for CNT to metal
remains around 10-% Q-cmZ2. This value is still an order of magnitude higher than the contact
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resistance of 5.8*10-6 Q-cm? for Cu at the 22nm node, highlighting ongoing challenges in
achieving comparable efficiency (Todri-Sanial, Dijon, and Maffucci 2017).

Ab initio calculations play a crucial role in tackling these challenges by providing a theoretical
foundation to explore and optimize the atomic and electronic structures at the interfaces. These
calculations help predict the optimal configurations for reducing contact resistance, focusing on
parameters such as the type of metal used, the number and dimensions of multi-walled
nanotubes, graphene layer properties, and interface characteristics. The working group
suggested avoiding metals altogether in situations where the carbon-based interconnect contact
resistance is too high (Wang et al. 2017). CNT-to-graphene contact resistance is poorly
referenced in the literature, but a value of 10 uQ-cm? has been reported (Ramos et al. 2016)
and could likely be further optimized. Another pathway could be to create graphitic nanosheets
through laser ablation of SiC (Salama et al. 2002). This technique is patented for an interposer
technology (Salama 2023) but may be expandable to create vertical and horizontal
interconnects with limited contact resistance.

Production of Carbon-Based Interconnects and Process Integration

As detailed in the Materials and Devices chapter's CNTFETSs section, the initial step for any new
material integration, such as carbon-based interconnects, involves a rigorous industry vetting
process to ensure that no contaminants are introduced. Once cleared, integration of these
technologies will bring additional challenges. Chemical vapor deposition (CVD) of CNT and
graphene generally requires seed layers and may not be BEOL-compatible to produce the
needed material properties with current methods. Alternatives like spin coating CNTs for
horizontal interconnects or transferring graphene sheets are BEOL-compatible but still require
significant process optimization to meet high-volume manufacturing standards and to ensure
they are free of contaminants.

If the industry opts for converting silicon carbide (SiC) to graphitic carbon, this would necessitate
not only new equipment but also extensive optimization of both the laser systems used and the
resulting material properties. Establishing a solid foundation for the integration of carbon
interconnects will be crucial. A dedicated fabrication facility, or fablet, that allows for the
exploration of new processes and their refinement to ensure CMOS compatibility could greatly
accelerate the transition of these technologies to full-scale high-volume manufacturing.

Action Plan for Carbon Nanotube-Based Interconnects

Table 46. Action Plan for Carbon Nanotube-Based Interconnects

Technolo_gy for I_Energy Carbon nanotube-based interconnects
Efficiency:

. Carbon-based interconnects for chip stacking (carbon through silicon vias, flip-chip pads)

. Carbon-based interconnects for PCBs (replacing/complementing Cu, though hole vias are quite
large and cannot coat via with Cu). CNT for interconnects into SiC (integrated circuits, substrate
fabrications, multiple applications).

Technologies of Interest: e  Carbon-to-carbon-based vertical and horizontal interconnects; carbon-to-carbon HDI (CNTSs,
graphene)

. CNTFets for compute to memory bus

. Flexible electronics

Challenges Addressed ‘ Solution Pathways
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interface.

compatible.

Major Tasks/Milestones

CMOS-compatible spin coating
for horizontal interconnects

. Reduce Ohmic contact at carbon/metal, carbon/carbon

. Improve production of global interconnects with correct diameter,
length, and chirality for optimal material properties along with
improved filtration purification processes.

. Research low-temp. deposition processes (under 300°C), seed
layer, or conversion technologies for of vertical interconnects.

. Integrate processes for CNT interconnects that are CMOS-

. Understand junction contact resistance of carbon based
horizontal and vertical interconnects.

Metrics

Ability to demonstrate a
metal layer with 90nm
technology

Develop contact promoter between metal interconnect and
C (Ag, Ni, Pd, TiN) in addition to ab initio calculations to help
understand the electron transport between carbon-to-metal

and carbon-to-carbon.

Produce vertical CNTs through low-temp. (<400°C) with a
cobalt seed. Produce pure metallic SWNTs and MWNTs
containing electrical properties like metallic SWNT via wet
chemistry processes with filtration/purification processes to

remove impurities.

Optimize CMOS-compatible, carbon-based interconnects
using spin coating by fine-tuning the solution viscosity and
substrate roughness and by enhancing inkjet printing

processes.

Investigate SiC to graphitic interposer technology (no EDA,

PDK for this technology).

Targets

Achieve legacy nodes

Achieve chip-to-chip compatibility

Timeline

0-1 years

Vertical via fill for CNTs
(inkjet, squeegee);
Molarity of solvent layers,
interlayer resistance;
Comparable to the

CNT with lower resistance than
copper, suitable for lower RC delay
at approximately 20nm technology

0-2 years (ink jet,

carbon interposer technology

high-frequency.
performance, and current
carrying capacity.

thermal management to enable
operations at higher temperatures).

Vertical interconnects . squeegee)
resistance of copper. scale 3-5 years
Efficient routing on <350°C for BEOL compatibility
interlayers; Low interlayer
resistance applicable to
global interconnects.
Advanced packaging.
High power and energy Used in high-performance computing

SiC conversion to graphitic savings applications. (HPC), Al interposer technology, and 2 y_ear_s

Thermal considerations, power electronics (especially for (application

development)

On par with the contact

Develop CNT technology with

situ, ex situ)

Stakeholder

copper

Suitable for high-power application

Role

Col;neéirne;?etlgr:g\évllzigree S:;at resistance of copper. resistance lower than or comparable é;‘;é’:;rii
ex};eriments Knowledge sharing to 1o copper for both local and chip-to- demonstration)
reduce iterative testing. chip interconnects.
Develop accurate
L . . interface models to Enhance electrical structure to
Ab initio calculations for interface determine the electronic optimize performance
production and physical structure at ) ) ) . 3—4 years
p Define physical dimensions of
he CNT-metal interface.
the CNT-metal interface SWNTs and MWNTs
Assess Fermi level and
band structure.
Omnidirectional interconnect (in On par with resistance of Multi-die stacking. 7 years

Stakeholders and Potential Roles in Project

Product Manufacturers/Suppliers

Supplying high metallic CNTs, graphitic interposer technology

End Users/OEMs

Testing and integration

Academia

Basic/experimental research to enable technologies
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National Laboratories ®

Basic/experimental research to enable technologies, take to higher TRL

. Funding opportunities
Government

Required Resources

Develop a fablet capable of integrating CNTs into the BEOL
process, serving as a generic institute to lower the barriers to
entry.

Enhance the availability and development of simulation tools and
libraries, including Density Functional Theory (DFT) and ab initio
methods.

Amplify focus on thermal characteristics in academic research to
improve material performance under varying thermal conditions.

Use high-volume manufacturing laser machines for high
throughput of SiC conversion to graphitic carbon.

Address the limited scope of current carbon-based technologies
by adjusting architectural, power delivery, and manufacturing
processes. Development of dedicated EDA/PDK software tailored
to these materials is essential.

Develop curricula at both collegiate and workforce training levels
to educate on the unique requirements and applications of

. Explore extreme uses (temperature, radiation)

‘ Cross Collaboration Needs of Working Groups

. Materials and Devices: Synthesize metallic SWNT, MWNT.
Develop interconnect interface.

. Circuits and Architectures: Develop new systems and
circuitry for difference in potential and current given
ballistic e-transport and lower capacitance and voltages.

. Metrology and Benchmarking: Investigate voltages,
capacitance, failure mechanisms, interfacial issues,
benchmarking new performance, etc.

. Algorithms and Software: Update software/algorithms if
Circuits and Architectures effort enables different
architectures.

. Power and Control Electronics: Implement new power
paradigm with lower resistance and capacitance; voltage
drop of carbon-based interconnects will require power
supply changes.

carbon-based technologies.

2.3.2 Optical Interconnects

Optical interconnects provide a superior alternative for connectivity between on-chip cores and
within multi-chip modules, especially as the performance of electrical links degrades over longer
distances like those found in traditional circuit boards. As discussed in the beginning of this
chapter, a significant portion of energy in computer systems is consumed by interconnections
rather than logic operations, particularly at the board and chip levels. This is due to high signal
volume and the associated energy costs of charging and discharging wires with high
capacitance. Figure 35 presents benchmark data from around 2018, comparing the bandwidth
density and energy efficiency of state-of-the-art electrical and optical interconnects, expressed
in terms of bandwidth density multiplied by energy efficiency (specific energy in pJ/bit).
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Figure 35. Interconnect figure of merit benchmarks (circa 2018) with 2023 commercial and R&D optical
interconnect benchmark references. Source: Stojanovic 2020; Original source: Gordon Keeler, DARPA MTO, ERI

Summit 2019

Photonic transceivers enable high bandwidth optical signaling but currently exist commercially
as board-level pluggable components connected to chips and multi-chip packages via electrical
wires whose power dissipation and density limit overall performance. The DARPA Photonics in
the Package for Extreme Scalability (PIPES) program (Tauke-Pedretti 2023) has pushed the
boundaries of the electrical/photonic interface toward the package and board level through
further miniaturization of the photonic components. As a result of work done in the PIPES
program and elsewhere, the crossover point between optical and electrical interconnects has
moved from about 1 m in 2018 to about 10 cm by 2023 (Sorger 2023), with exact crossover
depending on many factors, such as underlying component technology, signal processing, and
signal modulation format. A commercial co-packaged optics (CPO) product (Broadcom 2023)
and an estimate based on recent R&D for sub-centimeter interconnections have been added to
the interconnect benchmark plot (see Figure 35). The latter is based on photonic waveguides
with 10 uym pitch, a 10 Gbps on-off keyed data rate (without multiplexing), transceiver-less
operations assuming 10 fJ/bit for the electro-optic modulator (EOM), 15% laser wall-plug
efficiency, and 30 fJ losses. These assumptions are supported by current R&D on the
component devices, as discussed in the following section.

Challenges and Solution Pathways for Optical Interconnects

To further exploit the benefits of optical links, photonics must become more intimately integrated
in the microelectronics package. However, the target of 1pJ/bit associated with technologies
such as those pursued by PIPES, while achieving impressive progress over the prior state of
the art, does not fully address the grand challenge sought after in the EES2 vision of 100—
1,000x power reductions for data communication and systems. Integrating optical transceivers
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(ideally monolithically) into electronic chips presents an opportunity to move closer to the more
ambitious EES2 goal.

An optical link needs components at each end to transmit and receive the signal. The source
needs a light source (generally a laser) and an electro-optical modulator, and the receiver needs
a photodetector. The potential for drastic reductions in the energy demanded by optical
interconnects through device scaling has been discussed in detail by Miller (2017), which
suggests a pathway for interconnects from ~ 1 cm to ~ 10 m that have the same energy (~
10fJ/bit) as local electrical wires on chip or better. Achieving this level of performance will have
far-reaching impact on the energy consumption of computer systems, substantially knocking
down the “memory wall” both in terms of latency and energy consumption. A more recent review
by Mekawey et al. (2022) provides more up-to-date references to the state of the art.

A fundamental quantum mechanical advantage of optical interconnects is known as “quantum
impedance conversion,” meaning that the optical signal only needs to charge the capacitance of
the photodetector and not the channel itself (Miller 1989). This avoids the major energy use of
electrical interconnects but trades that loss for the energy that must be consumed to power the
optical transmitter and receiver. To achieve very low-energy optical interconnects, the key
challenge is to reduce capacitance of photodetectors, optical sources, and their associated
circuitry.

Solutions to improving power consumption of optical links are rooted in (a) component
performance improvement, which includes clever designs, emerging materials, and deployment
of device optimization algorithms, (b) link-level optimization such as is enabled by multiplexing
of signals (Winzer and Neilson 2017), and (c) system synergies enabled by HI of multiple
technologies, each optimized for a specific purpose. Here, Hl is key since it allows reduction of
parasitic capacitances (e.g., between CMOS drivers and optoelectronic components).
Regarding the latter, emerging chip manufacturing capabilities are promising, such as Global
Foundries 45SPCLO, a 45nm SOI CMOS technology monolithically integrating RF, analog, and
silicon photonics capability (GlobalFoundries 2022).

Semiconductor Lasers

Semiconductor lasers act as light sources that are modulated to encode information. For
transmission over long distances, most transmitters use externally modulated lasers. However, for
short-reach links, lasers can be directly modulated, avoiding the need for a separate modulator,
and thereby offering savings in energy consumption and transmitter footprint.

Integrating lasers with photonics has its challenges, though significant advancements have been
reported recently (Li et al. 2022). To achieve optical gain on Si, an effective and common solution
is to integrate a llI-V semiconductor gain medium on a Si photonics platform. IlI-V lasers have
the advantages of high gain, high optical output power, and the ability to operate using electrical
pumping. Since IlI-V materials are not CMOS-compatible today, integration approaches with Si
photonics platforms include flip-chip integration, transfer printing, and heterogenous bonding.
Direct growth of 1lI-V gain material on silicon substrate may bring the cost down and improve
scalability. Quantum dot (QD) lasers integrated on Si through bonding have also been reported
recently (Norman et al. 2019; Shang et al. 2022).
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Electro-Optic Modulators

Achieving efficient modulation of light in optical interconnects presents significant challenges.
An electro-optic modulator (EOM) operates similarly to a transistor, with an optical source and
drain, and an electronic gate that modulates the refractive index of the optical medium to
modulate light. The most common optical modulators are the lithium-niobate-based Mach-
Zehnder modulator (MZM), indium-phosphide-based electro-absorption modulator (EAM), and
silicon ring modulator (RM). MZM is currently more widely used (Wooten et al. 2000) than the
other types of modulators, especially in long-haul applications, because of better extinction ratio
(the ratio between signal energies for the “1” and “0” states), larger modulation bandwidth, and
relatively low influence of thermal and polarization variations on the modulator performance.
Indium-phosphide EAMs offer advantages in terms of lower drive voltage requirements and
smaller form factor (Wu et al. 2017). Silicon RMs are favored for their compact size, low loss,
low energy consumption (~6fJ/bits), and compatibility with CMOS technology (Li et al. 2013).
However, their low extinction ratio and strong sensitivity to temperature remain obstacles to
adoption. Research is underway to address these limitations.

Sorger et al. (2015) laid out an evolutionary Device length

. 42 1mm 1um 1nm
path for future EOMs in terms of 10 L
technological advancements and
limitations, as shown in Figure 37. EOMs,
crucial for converting electrical data to
optical signals, can operate by directly
modulating the light source or through
other mechanisms. The focus is on
reducing the physical size of EOMs to
lower capacitance and energy
requirements while increasing data
transmission rates. Nanoscale EOMs,
approximately 1 ym in size, can achieve 10 100 1,000
switching rates over 100 Gbps and Bandwidth (Gbps)
switching energy as little as 1 fJ/bit, which
reduces the power needed to just 1 pyW. Figure 36. Optoelectronic modulator device scaling
This is a 1,000x reduction compared to laws.Source: Sorger et al. 2015
classical modulators. However, enhancing
light-matter interaction to reduce size further without sacrificing performance remains a
challenge. Current efforts explore various promising materials and techniques such as free
carriers in silicon and indium tin oxide, quantum-confined Stark effects in germanium quantum
wells, and permittivity tuning in graphene (Xu et al. 2005; Amin et al. 2018; Srinivasan et al.
2019; Ye et al. 2014). These advancements have led to significant reductions in device size and
improvements in modulation efficiency, marking substantial progress toward integrating these
technologies into standard manufacturing processes.
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Photodetectors

The photodetector circuits in long distance communication links are generally designed for
maximum sensitivity for weak signal recovery in the presence of noise. The amplification
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circuitry in these links is, in some cases, the largest energy consumer (Krishnamoorthy et al.
2015). However, for short distance interconnects, the requirements change substantially
because the link operates far above the noise floor (Krishnamoorthy and Miller 1996),
analogous to short point-to-point electrical wiring. The requirement for short chip-to-chip or intra-
chip optical interconnects is to make the optical interconnect behave just like a short electrical
wire, without the overhead associated with low-noise amplification, line coding, clock and data
recovery (CDR), or serialization/deserialization (SERDES) needed for long-distance
interconnects. These simplifications make it easier to conceive of optical interconnects between
chips while also enabling those low-energy interconnections to be extended to much greater
lengths (meters rather than centimeters) because of the absence of charging capacitance and
very low signal attenuation.

If a photodetector can be made small enough and close enough to the input gate of a CMOS
transistor, the photodetector can generate a voltage swing large enough to drive the transistor
directly without any amplification—a so-called “receiverless” photodetector (Miller 2017) able to
achieve ~1 fJ/bit total energy for the receiving system. To achieve the low photodetector
capacitance to reach this performance level, the photodetector’s volume must be on the order of
1 cubic ym or less (Miller 2017). Adequate absorption can be achieved in the direct-bandgap IlI-
V semiconductors commonly used for commercial fiber optic receivers. Furthermore, emerging
concepts of quantum-thin layered materials, e.g., transition-metal dichalcogenides (TMDCs),
show a very high absorptivity (a. = 105/cm), exceeding that of IlI-V materials by an order of
magnitude or more. Combining such emerging materials with optical-mode compression and
impedance-matching techniques can enable receiverless and self-powered photodetection
schemes and hence more efficient links (Wang, Sorger, and Dalir 2022; Wang et al. 2023).

The photodetector must also be very close to the input transistor (within about 1 ym),
necessitating monolithic integration. Monolithic integration of IlI-V devices on silicon ICs is a
challenge that has attracted significant research attention over time, including epitaxial
deposition of 11l-V quantum dots on Si (Wu, Tang, and Liu 2019). Recent work (Wen et al. 2022)
demonstrated monolithic fabrication of InP/IngsGag sAs/InP p-i-n heterojunction photodiodes that
were also capable of working as LED emitters. These photodiodes could be an alternative to
traditional lasers and EOMs as optical transmitters. The key to their effectiveness as
transmitters lies in the ability to confine their light emissions to a single mode, which enhances
the directionality and intensity of the light. Concentrating structures are used to achieve this
confinement, optimizing the photodiode's output for more efficient optical communication
systems (Miller 2017).

Interconnection Optics

The optical medium interconnecting transmitters and receivers also poses several challenges to
enabling widespread use in chip-to-chip or intra-chip connections. The list of challenges
includes integrating a practical number of channels, achieving high bandwidth transfer,
minimizing losses of signal power within the medium and at interfaces, and managing costs.

Optical fiber coupling may be accomplished via grating couplers, edge couplers, or evanescent
couplers (Mekawey et al. 2022). Challenges for the waveguide include coupling losses at either
end, losses in propagation, and bending radius (which can directly impact losses or crosstalk
within the waveguide due to reflections). Very compact and massively parallel optical
interconnects will require advances in these areas.
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In the design of communication links, there is a fundamental trade-off between the number of
physical channels, the data rate supported by each channel, and the complexity of circuitry at
either end of the link. In long-distance communications, Serializer/Deserializer (SERDES)
circuitry is commonly used to merge multiple data channels into a single serial stream. This
approach simplifies the physical interconnect but can constrain the flexibility needed for shorter
connections on a chip or between boards. For these shorter connections, parallel
communication architectures are preferred due to their lower latency and simpler circuitry.
Additionally, in the optical domain, signals can be combined using Wavelength-Division
Multiplexing (WDM) rather than time-multiplexing. WDM allows for substantial bandwidth on a
single optical channel by utilizing the high frequency of optical carriers. For instance, a
demonstration by Liu et al. (2019) achieved a transmission rate of 4.1 Tbps using 64 WDM
channels, showcasing how optical technologies can efficiently manage the trade-offs between
channel count and data rate to achieve high bandwidths with reduced complexity.

Monolithic integration is crucial in the context of intra-chip optical links because it allows the
entire system—transmitters, receivers, and waveguides—to be fabricated as a single structure
directly on the semiconductor substrate. This integration enhances compatibility with existing
semiconductor processes and significantly improves the efficiency and compactness of the
communication system. For instance, a 2020 study by Liu et al. offers a practical example of
these benefits. The authors developed a monolithic plasmonic waveguide that drastically
outperformed traditional electrical connections in terms of signal latency and energy dissipation.
Their design achieved signal latencies of approximately 0.18 to 0.19 picoseconds (ps) and
energy dissipation rates between approximately 2.5x1073-3.8x1072 fJ/bit. Additionally, they
reported minimal crosstalk with a coupling length of 155 to 125 uym, demonstrating effective
isolation between channels over short distances. This example underscores the potential of
monolithic integration to significantly enhance the performance of optical interconnects on chips.

Optical signaling also opens the possibility of free-space communication links between chips or
boards. The theoretical diffraction-limited density of such connections is enormous; for example,
two 1x1 cm surfaces separated by 1 cm could theoretically support up to 100 million channels,
or up to 10,000 channels if separated by 1 meter (Miller 2000). The optical interface could
consist largely of conventional imaging optics or lenslet arrays. Interconnections of this type can
not only transfer tens of Tbps between chips, but also can enable clock signals to propagate
reliably over distances of meters to enable much larger machines to operate in strict
synchronization than is possible with electrical connections.

Finally, cost is one of the biggest obstacles to the widespread replacement of electrical
connections with optical connections. Photonics packaging is far more expensive than
conventional electronics packaging (Mekawey et al. 2022), making cost reduction a central
concern for the development of optical interconnect technology. Automating the chip packaging
ecosystem is expected to significantly reduce costs. Furthermore, achieving high-performance
and low-energy photonic links that advance heterogenous technology system-on-chip solutions
may drive costs down at the system level.
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Action Plan for Optical Interconnects

Table 47. Action Plan for Optical Interconnects.

Technology for Energy Efficiency Using optical interconngcts to replace metal for on.-chip and off-chip communications
to lower energy costs, improve latency and bandwidth, and move past the data deluge
. Pluggable transceivers (400 Gbps) (100 m to 1 m) (co-package electronics and
optics)
. . Optical engines (close to processors for TB/s) (<1 m in general, depends on use case)
Technologies of Interest . Optical intirconnect for data center architectures, rack%o rack (100 mto 1 m)
. Optical interconnect for chip-to-chip connection (cm scale)
. Optical interconnects for intra-chip and 2.5/3D HI connections (mm scale)
Challenges \ Solution Pathway
. Miniaturize key optical components. . Improve micron-scale electro-optic
o Minimize supporting circuitry and associated capacitance. modulators and light sources.
e Integrate electro-optic devices monolithically on silicon CMOS chips. e Achieve monolithic integration of IlIl-V
e Improve manufacturability and cost. photodetectors on CMOS silicon.
. Develop advanced interconnection optics
including free-space links.
Major Tasks / Milestones Metrics Targets UElie
(VEELD)
50 fJ/bit, linear footprint < 500 ym ER/IIL=1.0 3-5
Advanced electro-optical 10 fJ/bit, linear footprint < 250 um ER/IL = 2.0 6-9
modulators 1 fJ/bit, linear footprint < 100 ym ER/IL=5.0 10-15
0.1 fJ/bit, linear footprint < 10 um ER/IL =10.0 16—20
0.7x40=28G 0-3
GBP = Responsivity x Speed 1x50G 3-5
Advanced photodetectors [ AW x b/s] 2%x100G 6-9
10x200 G 10-15
. . 50% x 1-4 0-3
. Coupling Efflé:cl)ir;?y x Channel 70% x 8 4-8
o 90% x 64 9-15
[% x n]
99% x 256 15+
10% x 1 0-3
Laser source Efficiency-Channel-Product 20% x 8 3-6
[% x N] 30% x 64 7-12
50% x 256 12+
0.2 x50 0-3
n 8 Loss x bending-radius 0.1x30 3-6
Waveguide (passive) platform [dB/cm x um] 001x15 712
0.001 x 2 12+
Stakeholder Role
Industry Groups Free MPW runs, then dedicated runs as partnerships
End Users/OEMs Joint demo projects, sharing what end-use/product limitations exist, to help design
new photonic ICs and components
Academia Long-range and exploratory device and system technology development
National Laboratories Metrology, placement for initial demonstrations, initial technology ‘leaps’
Government Funding support, convener role through centers of excellence
Other Standards development (e.g., IEEE, SPIE)

Cross-Collaboration with
Other Working Groups

Required Resources
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. Materials and Devices: Develop more
efficient EOMs (e.g., ER/IL) and
photodetectors; optical coupling losses

. Academia: Photonics 10-year R&D center support for long-term planning | e Circuits and Architectures: Implement co-

(e.g., $20M for 10 years, $2M/year to fuel the technology pipeline) design of driver/control of photonic

. Government: Funded centers of excellence, 2-3 programs, $50+M components
each, to accelerate the technology and connect R&D to product . Algorithms and Software: Optimize algorithms
demonstrations to increased bandwidth

. Education and Workforce Development:
Accelerate photonic IC design education and
expertise

2.3.3 3D Hybrid Bonding

As 3D packaging approaches continue to evolve, a critical need is to develop capacity for robust
wafer and die stacking with improved interconnect methods. The traditional C4 technology,
which involves soldering connections at the corners of stacked chips, has been gradually
superseded by copper bumps or microbumps. These create numerous vertical copper-to-copper
interconnects between the stacked elements. offering enhanced bandwidth and energy
efficiency compared to traditional soldering approaches. However, reducing the pitch—the
distance between each connection—to less than 10—15 um is essential for further bandwidth
and efficiency gains. This miniaturization presents significant challenges, but is necessary to
meet the demands of high-performance, energy efficient devices (Albright 2022).

3D hybrid bonding, which creates chip interconnects using both metal (copper) and adjacent
dielectric elements (SiO-, SiCN, SixNy), facilitates chip-stacking connections below the 10 pm
level. These permanent dielectric-to-dielectric and metal-to-metal bonds can in turn deliver
orders-of-magnitude improvements over copper microbumps, reducing signal delay, enhancing
bandwidth and memory density, and improving energy efficiency (Hiebert 2023). 3D hybrid
bonding is also referred to throughout the industry as a direct bond interconnect (DBI).
Comparisons to other bonding methods and an example schematic of 3D hybrid bonding are
shown in Figure 37 and Figure 38, respectively.

2um Pitch
Cu-Cu Hybrid-bonding

M-bump

Figure 37. Comparative images and size scales for solder, microbump, and 3D hybrid bonding interconnects.
Source: Jani 2019
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(a) After chemical/mechanical (b) Wafers are alighed and (c) Heating strengthens SiO, bonds,
polishing, the Cu via height is slightly compressed at room temperature for and larger thermal expansion of Cu
less than the surrounding SiO, film initial Si0, bonding induces Cu/Cu bond through

compressive stress
Figure 38. 3D hybrid bonding process with Cu vias and SiOz2 films. Source: Ong et al. 2022

Copper-to-copper bonding (uBump) is frequently used for 3D packaging due to its low resistivity,
high energy efficiency, and ability to accommodate 15-20 um pitch sizes. However, its high
bonding temperatures and the difficulties in scaling below 10 um make it impractical within many
heterogeneous integration applications or with components (such as certain logic devices) that
have a limited thermal budget. 3D hybrid bonding—using copper and a dielectric material—has
proven suitable for mass production of CMOS devices and has the potential to achieve the
interconnect densities that will be required for the next generation of vertically stacked
packaging (e.g., 3D memory on logic integration). The dielectric materials bond well at lower
temperatures without external pressure, eliminating many of Cu-to-Cu bonding’s thermally
induced issues while potentially allowing for submicron copper pad pitch sizes and, most
importantly, improving energy efficiency.

Reduged pitch sizes and Shor_tened Table 48. Impact and Timeline Estimates for 3D Hybrid Bonding
electrical paths allow 3D hybrid

bonding to achieve lower power 3D Hybrid Bonding
consumption and latency relative to

Cu-to-Cu bonds, while also reducing Energy Timeline to

th | ist Pol Efficiency Incumbent Technology Demonstration
ermg resis ancg. oymer ITEOETE

adhesives/underfill materials are no :

longer needed because the dielectric 3x Cu microbumps 0 years

materials themselves serve as the

underfills. Wafer-to-wafer hybrid

bonding approaches have been utilized

in image-sensing applications for the past few years, and the potential benefits of hybrid
bonding for enabling heterogeneous integration has led to a significant industry push in this
direction (Albright 2022).

Recent examples of commercial applications using 3D hybrid bonding include AMD’s 3D V-
Cache™ technology. It debuted in 2021 and has been implemented across various gaming and
high-performance server processors. AMD described it as the industry’s first 3D product for
HPC applications and the first demonstration of hybrid bonding used in these applications (AMD
2023). The company has indicated >15x improvement in interconnect density and >3x
improvement in interconnect energy efficiency relative to using 3D microbumps. IBM and
ASMPT presented a new hybrid bonding method at the 2023 IEEE Electronic Components and
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Technology Conference, touting a bond thickness between chiplets of around 0.8 microns
(Murphy 2023) (significantly thinner than what is possible with solder). Finally, leading foundry
United Microelectronics Corporation (UMC) has been working with Cadence Design Systems,
recently certifying their 3D hybrid-bonding technologies within Cadence’s design platforms,
allowing the foundry’s customers to develop 3D systems more easily and accelerate these
systems’ time to market (UMC 2023) while improving energy efficiency.

Challenges and Solution Pathways for 3D Hybrid Bonding

Hybrid-bonding techniques are being implemented in various advanced 3D packaging
applications. However, as the industry pushes toward single digit micron and submicron pitch
sizes, key challenges such as device alignment and process controls become more critical and
need enhanced solutions. Additionally, reliability issues such as electromigration and copper
diffusion become more pronounced at these smaller scales and must be addressed.

Alignment, Metrology, and Process Controls

As pitch sizes shrink, tighter control of bond-pad alignment—with submicron accuracy—to
ensure secure connections will be increasingly important. New metrology and process control
techniques are needed, both to meet these requirements and to maintain satisfactory process
yield. Different bonding structures and increased keep-out zones (i.e., unused die areas) may
also be needed in some cases, such as with double-sided bonding. More stringent process
control over aspects like chemical mechanical polishing (CMP), wafer dicing, wafer/die cleaning,
dielectric thickness and surface topologies, and the dish-like shape of the copper pads must
also be considered.

Contamination control, bonding temperature precision (Hiebert 2023), and thermal-budget
management—especially for cases involving elaborate 3D architectures—must also be dealt
with going forward. Efforts to address these challenges will center around process optimization
and continuous improvement.

Die Integrity and Manufacturing Standards

Particularly for die-to-wafer hybrid bonding, ensuring that only good dies are used is vital to the
integrity of the final chip’s performance. Additional process control steps, along with accurate
manufacturer-provided die-quality information, will be essential within such applications (Hiebert
2023). New manufacturing standards will also be necessary to guide hybrid bonding’s strength,
durability, cost, and emissions considerations going forward. These new standards will likely
follow comparable copper-bond standards.

Challenges at Reduced-Length Scales

Potential challenges for bond reliability due to pitch shrinking and higher-density interconnects
must also be identified and addressed going forward. These could include local current
concentration and electromigration, short circuiting (due to dielectric breakdown and copper
diffusion to dielectrics), dielectric reliability deterioration (due to shorter conduction paths), and
path breakdowns (due to misalignment of the copper bonding pads). Additional work will also
generally be needed in developing and improving 3D EDA tools for both multilayer and
heterogenous integration.
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Action Plan for 3D Hybrid Bonding
Table 49. Action Plan for 3D Hybrid Bonding

Key Technology for Energy
Efficiency

High-performance and energy-efficient 3D hybrid bonding

. Ru-, Co-, Ir-, and Rh-based metal interconnects
Technologies of Interest: . Chip-to-chip: EMIB/Foveros, TSMC interposer, chiplet, Through silicon vias, hybrid bonding
. Edge bonding

Challenges Addressed Solution Pathways

. Develop low-temperature bonding methods that can
prevent Cu oxidation and enable fine-pitch structure with a

high density.
. Replace solder-based interconnect technologies with smaller, . Continue to integrate bumpless Cu hybrid bonding
more densely packed interconnects featuring increased input technology and surrounding dielectrics (e.g., SiO2, SiCN,
and output pins to enhance the energy efficiency of 3D SIN). Shown to be suitable for mass production of CMOS
technologies. devices while increasing interconnect density below 10 ym,

. New bonding methods enabling reduced pad size are required which can enable 3D stacking.

and must show thermal and mechanical reliability and electrical . Develop inorganic dielectrics with low bonding temperature,
properties on par with those of metal-to-metal bonding. alleviating thermal gradient issues.
. Scaling Cu pitch sizes below 10 pm with high thermal budget. . Achieve lower power use and latency from reduced pitch

e Thermal budget differences for different components size and shortened interconnect length with hybrid bonding.

. Investigate optimal surface treatment methods to remove
copper oxide, including methods like using cohydroxylated
and cohydrophilic copper oxide. Explore selective thermal
atomic layer deposition of copper and adjust bonding
temperatures to improve the bonding interface.

. Removal of CuOx for improved Cu-to-Cu connections.

Major Tasks/Milestones ‘ Metrics Targets Timeline

. Sufficient yield in comparison to
solder techniques

Understand the effect of bonding *  Further reduction of thermal budget 0-2 years (initial
process parameters on hybrid . Improved device-to-device in hybrid bonding deployment)
bonding quality to allow gohod | communication (TOPS/W) | o  precise alignment with submicron 2-5 years
process control (e.g., mechanica . iff f

L f ; Lower power deliver accuracy, different bonding rocess
pollshln_g! wafer/die cleaning, and : werpow e structures (for double-sided im(‘:ovement)
wafer dicing) bonding), and increased keep-out P

zones to realize successful bonding
and high yields

Require manufacturing standards | , Comparable Cu bond . Meet testing standards for durability 0-2 vears
to guide hybr]d pondlng strength, standards . Meet or beat emissions standards y
cost, and emissions

Bauiie (el i lit . Via precisely controlled chemical

st:ﬂlé;?dslgt]o gozg,ilsssluga%l;a "y mechanical polishing (CMP), achieve

faness for D2D or D2W i e e

bOPtQInlg;.tDebrls, butrrz,;nq otggr copper dishing for well-controlled

particulates generated during die | o Fjatness, low dishing thermal expansion. 0-2 years

singulation would induce uneven

topography of bonding surface e  Carefully determine bonding pattern
and void formation, leading to density, configuration, and topology
poor electrical connectivity or of adjacent layers to minimize
open-circuit failure. impact to surface topography.
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. Pitch shrinking induced
local current
concentration.
. Electromigration effects.
- Ongoing efforts
*  Short circuit due to e Improve the reliability of with targeted
dielectric breakdown. interconnects to sustain pitch . t
Identify and address bonding R Copper diffusion to shrinking down to submicron sizes. improvements
ability i ; ; h ) expected to be
reliability issues associated with dielectrics. Enh the stability and "
high-density interconnects. * nhance the stabllity an ) implemented
. Dielectric reliability peﬁqrmance under high-density within the next 3-5
deterioration due to conditions. years
shorter conduction paths
or breakdown paths
caused by misalignment
or overlay of bonding
pads.
Stakeholder Role

. Continue to create and advance hybrid bonding, ensure reliability

Product Manufacturers/Suppliers | e EDA suppliers must advance current technology and simulation using high-density interconnect
(HDI)

. Redesign for the use of this technology to achieve speed and energy efficiency gains. Possibly

End Users/OEMs add redundancy given reduction of size (HDI).

. EDA for design

Academia R . ) )
. Die thinning, co-planarity experimentation

. EDA for design

. Die thinning, co-planarity experimentation
National Laboratories . . )
. Initial device prototyping

. Simulation to understand transport properties with different bonding configurations

Government . Funding, part stability (NASA, military, etc.)

Required Resources Cross Collaboration Needs of Working Groups

. Manufacturing Energy Efficiency and Sustainability: Develop
the hybrid bonding and Cu conductive pathway process;
ensure alignment while moving to smaller pitch size for

. Funding and locations for die thinning, application specific HDI stacking.

equipment for smaller companies . Circuits and Architectures: Develop circuit designs and

. Allocate resources for academic and national laboratory research architectures that leverage advanced packaging
on integration techniques and simulations, including device techniques. Focus on scaling down global interconnects
functionality, heat management, and power distribution. and enhancing thermal management to accommodate

R Reliability testing smaller device footprints and increased density.

. Algorithms and Software: Explore potential need for new

. Hardened electronics .
programming.

. Power and Control Electronics: Deliver power through
different architectures.

2.3.4 Vertical Integration (2.5D/3D)

Vertical 2.5D and 3D packaging approaches offer significant opportunities for creating more
efficient and faster microelectronic devices compared to traditional 2D architectures, such as
PCle 2D interconnects. There has been a surge in advanced-packaging technologies over the
past 25 years, building on earlier efforts in wire bonding and flip-chip approaches (see Figure
39) and incorporating a diverse range of vertically oriented solutions that allow more efficient
access to memory and other IC components.
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2.5D/3D Nonmonolithic Technologies

In advanced packaging, vertical 2.5D approaches generally utilize an interconnect carrier such
as a silicon interposer layer, heterogeneous interconnect stitching technology (HIST), or bridge
chips to route wires horizontally. 3D non-monolithic packaging involves two or more chips being
stacked vertically, typically connected either with a through silicon via (TSV) and microbumps or
through bumpless 3D hybrid bonding (Burkacky, Kim, and Yeom 2023). The wire lengths for
2.5D integrations are generally in the 100 micron—5 millimeter range, while vertical 3D layers
use TSVs and nanoscale vias with lengths around 100 nanometer—100 microns, affording
significant efficiency and latency improvement potential in the transition from 2.5D to fully 3D
architectures (Zhang, Zhang, and Bakir 2018). A detailed benchmarking study by Zhang et al.
evaluated various 2.5D and 3D integrations—including bridge chips, interposers, HISTs, and 3D
monolithic (discussed in the next sub-section) and non-monolithic approaches—based on
typical configurations and component sizing. Figure 39 illustrates the schematics and relative
capacitance breakdowns for these different signal channels.

I | bump and Pad
[ Receiver
[ Channel wire
[ 1 Receiver ESD
B Driver ESD
I Driver

250 |

200 |

150

Die #1

100

Receiver

Capacitance Breakdown (fF)

50

Interconnect ca rrier

0
Bridge-chip HIST TSV-3D Monolithic-3D

(b)

Figure 39. Digital signal channel paths and associated capacitance.(Left) schematics of digital signal channels:
(a) bridge-chip 2.5D, (b) interposer and HIST 2.5D, and (c) 3D integrations; (right) capacitance breakdowns for these
signal channels (ESD = electrostatic discharge capacitor). Source: Zhang, Zhang, and Bakir 2018

Silicon interposers, which have been available for over a decade, incorporate horizontal
electrical connections between adjacent die, combined with TSVs that pass vertically through
the silicon die/wafer. Taiwan Semiconductor Manufacturing Company (TSMC) is the main
industry supplier of a range of interposer technologies (Burkacky, Kim, and Yeom 2023). While
interposers generally serve as a 2.5D interconnect technology, TSVs can also be utilized for
fully 3D chip-stacking configurations. HIST uses a 2.5D and 3D design similar to an interposer
configuration but uses stitch chips with high-density, closely packed wires along with multi-
height, compressible micro-interconnects (Jo et al. 2018) to enable chiplet-based designs.

Bridge chips provide high-density interconnects between die and can achieve larger sizing than
is often possible for silicon interposers, which can face cost and technical limitations (Bakir
2022). Compared to interposers, bridge chips are a relatively new technology and typically use
less silicon (Burkacky, Kim, and Yeom 2023). The following examples help illustrate the
diversity of such technologies being explored or brought to market: Intel’s embedded multi-die
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interconnect bridge (EMIB) silicon bridge technology uses thin silicon pieces embedded inside
an organic substrate to connect adjacent die (Keser and Kroehnert 2019). Samsung, IMEC, and
others have pursued similar 2.5D silicon-bridge approaches (Lapedus 2018). Intel's Foveros
technology is a 3D face-to-face connection between dice/chiplets that complements the EMIB’s
2.5D functionality, using small microbumps to accomplish the chip-on-chip bonding and improve
overall interconnect density (WikiChip 2023). Another significant development in chip stacking is
AMD’s Ryzen technology, which employs hybrid bonding—not a bridge chip technology but
rather a different approach to achieve a 3x improvement in energy efficiency (AMD 2023).

A major bottleneck in advancing 2.5D and 3D HI technologies is the lack of standardization,
notably the absence of universally adopted frameworks like the Universal Chiplet Interconnect
Express (UCle). This issue is compounded by the limited number of third-party vendors in the
industry. Most major fabs typically do not incorporate wafers from external sources, limiting the
diversity and innovation typically brought by third-party contributions. This restriction is
particularly challenging for advanced packaging and fabrication processes like Through-Silicon
Vias (TSVs) and die-to-die bonding, which require complex and extensive manufacturing
infrastructure. Moreover, 3D monolithic architectures face significant challenges related to yield,
cost, availability of suitable materials and devices, and effective thermal management (Zhang,
Zhang, and Bakir 2018).

3D Monolithic Technologies

While 2.5D and 3D non-monolithic approaches offer significant energy and signal-delay
improvements over traditional 2D packaging, the relatively large size and capacitance of TSVs
remains a limiting factor. Current technology nodes are in the single-digit nanometer range, yet
TSVs generally have diameters of a few micrometers, along with large pitch (30-50 um), large
keep-out-zones, and, accordingly, large capacitances (Dhananjay et al. 2021). Monolithic 3D
integration technologies allow device layers to be sequentially assembled in the vertical
direction; thus, multiple layers of transistors can be fabricated above a single substrate
(Dhananjay et al. 2021). Monolithic inter-tier vias (MIVs) serve to interconnect these vertical
device layers, where the vias’ diameters are orders of magnitude smaller than those of both
TSVs and mini-TSVs (see Figure 40).

The diagram shown in Figure 40 visually represents the size differences among 14-nm NAND
gates, Monolithic Inter-tier Vias (MIVs, 50-nm), Mini TSVs (2um), and regular TSVs (5-um)
compared to a 28-nm NAND gate. Each shape and size reflects the relative scaling: the small
rectangle for the 14-nm NAND gate signifies its base size of 1 times; circles are used for MIVs
and TSVs to indicate their cylindrical nature, which makes them appear disproportionately larger
due to their area encompassing both the core and insulation; the larger rectangle represents the
older technology of a 28-nm NAND gate, emphasizing the significant reduction in scale over
time. The energy-saving opportunities from these various 2.5D and 3D vertical integration
approaches are estimated in Table 49.
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Figure 40. Relative sizes of typical NAND gates, MIVs, and TSVs. Source: Samal et al. 2016

Lowering interconnect capacitance means lower energy per bit and higher bandwidth. For
analog-sensing applications, it also means lower noise and power use in the subsequent
signal/amplifier stage. While 3D monolithic integration faces several challenges distinct from
those of the 2.5D and 3D non-monolithic approaches—including thermal management, cost,
modeling, and yield constraints—the energy efficiency and latency benefits of 3D monolithic
approaches make them promising for high-performance applications. With the ability to mix
different process technologies into the vertical layers (logic + memory, logic + logic, logic +
analog, etc.), monolithic 3D opens nearly endless IC design opportunities.

Although there are currently no examples of commercially available 3D monolithic technologies
(Dhananjay et al. 2021), these advanced packaging approaches are expected to play an
increasingly important role over the next decade. Current limiting factors include overall
manufacturing complexity, the need for low-temperature processing of the stacked device
layers, and insufficient 3D design infrastructure and metrology.

Vertical integration, sometimes referred to as “More than Moore,” is of great interest to the
EES2 community, given its vast landscape of integration technologies with associated
performance and energy efficiency improvements. Table 49 compares the various vertical
integration approaches in terms of energy per bit; the TSMC interposer represents the
commercial benchmark product for 2.5D as a mass-produced state of the art.

Table 49. Energy Per Bit Comparisons of Different Vertical Integration Schemes

. Commercial Commercial . .
Baseline Performance Timeline

Specified Technology Performance Be:r::)l;r:;rk PB;;l:rmil’:e Multiplier (years)

Bridge Chip, . TSMC .

EMIB/Foveros 150 fJ/bit Iiossaer 263 fJ/bit 1.6 0
TSMC Interposer 263 fJ/bit TSMC 263 fJ/bit 1 0
Interposer

Heterogenegus_ . TSMC .
Interconnect Stitching 259.9 fJ/bit Interooser 263 fJ/bit 1 0
Technology (HIST) P
Through-Silicon Vias 176.2 fJibit TSMe 263 fJ/bit 1.5 0
(TSVs) Interposer
Monolithic Inter-Tier
Vias (MIVs)* 0.1 fF TSV 5fF 50 7-10
135.1 fJ/bit TSMC 1.9
Monolithic 3D (with ESD) Interposer 263 fJ/bit (with ESD) 7-10
3.7 fJ/bit P 711
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(without ESD) (without ESD)
UCle 250 fJ/bit (2.5D) PCle 10 pJ/bit (2D) 40 1-3
3D Hybrid Bonding** <1 3D microbump 3 >3 0

Sources: Mahajan 2016; Angelini 2020; Zhang, Zhang, and Bakir 2018; Salman 2023
ESD for monolithic 3D refers to ESD protection capacitor.

*Energy per bit for MIVs are not found from literature; Using femtofarad to represent
capacitance.

*3D hybrid bonding energy metric taken from AMD. No approximation was done given the
unknown size of 3D microbumps and how this affects energy per bit.

Challenges and Solution Pathways for Vertical Integration (2.5D/3D)
Development of Standard Interconnect Schemes for 2.5D/3D ICs

There is currently a lack of standardization for 2.5D and 3D heterogenous-integration
approaches. The ability to more readily mix and match dice/chiplets and other IC devices from
different manufacturers and different technology nodes, for example, would allow for integrators
to adjust more easily to supply chain issues or incompatibilities between different generations of
technology nodes. An interconnect standard for 3D ICs (similar to UCle) alongside creation and
adoption of fabrication standards for heterogeneous integration—as well as 3D-compatible
process design kits (PDKs) from foundries—would all serve to facilitate more rapid development
and deployment of HI solutions.

New Electrical Design Automation Tools for 3D IC Co-Design

To reduce design time and risk, development of 3D electronic design automation (EDA) tools for
both multilayer and heterogeneous integration will be essential. These resources will need to
allow for co-design of different technologies and applications, satisfying key energy and
performance constraints while modeling important criteria such as thermal loads,
electromagnetic interference, and resource optimization. The collective expertise from the
industry and academia ensures the development of comprehensive security and verification
methodologies, as discussed in sections 2.2.7 and 2.3.6 of the roadmap.

Prototype Development Issues

If fabs limit or do not allow other intellectual property into their facilities, this will hinder
widespread success of APHI. The creation of an integration-minded fab/fablet might be of use in
overcoming such obstacles. Academia will need access to integration-minded facilities to
develop prototypes and help grow a workforce with the essential working knowledge of 3D ICs.
Potential solutions include establishing access to small-volume production and prototyping
facilities to foster innovation and workforce development, along with building a domestic supply
chain that incorporates integration vendors capable of accepting and combining wafers from
various foundries.

Bolstering domestic fabrication capabilities would improve prototyping, allow for PDK
development, and ideally establish libraries that encompass chiplets, 3D stacks, and monolithic
3D. Ultimately, the industry must be able to provide small-scale 3D manufacturing/packaging
capabilities at a reasonable cost.

Power Delivery
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2.5D/3D architectures present unique power delivery challenges. Unless die on different
process nodes have separate power sources, stacked chips can compete for power resources,
and transistors toward the top of a stack will see greater drops in voltage due to power traveling
through multiple TSVs (SRC 2023). New power delivery methods and novel materials for power
delivery are both needed. Technical targets identified include maintaining voltage noise within
5% to 10%, power efficiencies greater than 95%, and on-die temperatures less than 80°C.
Additional considerations related to power delivery can be found in the Power and Control
Electronics section of the roadmap.

2.5D/3D Nonmonolithic Package Assembly

The transition to AP represents a significant shift in how wafer packaging is typically handled
today. Currently, back-end packaging is most often outsourced to semiconductor assembly and
test companies (OSATSs) (Burkacky, Kim, and Yeom 2023). However, some of the APHI
technologies mentioned will require processing conditions more typical of front-end fabrication
and/or have stringent processing requirements. This may alter the role and importance of
OSATSs.

Thermal Budget Constraints

Novel packaging schemes that integrate devices with one another will increase thermal density,
requiring new methods for heat removal. As thermal densities reach over 100 W/cm?,
conventional air cooling will reach its limits. This requires investigation into improved TIMs, such
as nano-etched surfaces with high elastic modulus and thermally conductive materials;
improved heat sinks (such as nanodiamond copper); or water-cooled microchannels etched in
copper; alongside system-cooling technologies such as immersion cooling or direct cooling
through microfluidic channels (IEEE HIR 2023). Additional information on thermal budget
challenges and solution pathways is found in section 0, Thermal Management.

Action Plans for Vertically Integrated Devices and 3D Monolithic Integration
Table 51. Action Plan for Vertically Integrated Devices

Technolo_g)_/ for Energy . Energy-efficient vertically integrated devices
Efficiency

. Chiplets for 2.5D integration

Technologies of Interest: e Wafer-to-wafer 3D stacking
. Monolithic 3D integration with Multi-tier Vias (MIVs)

Challenges Addressed Solution Pathways
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. Develop and adopt universal standards and PDKs for Hl
and 3D fabrication.

. Standardize interfaces for different functions within chiplets
and 3D stacks.

e Al functional units implemented with the same technology node, | ®  Create and refine 3D EDA tools to support co-design across

leading to inefficiencies. different technologies.

e High energy consumption for data movement within and between | ®  Enhance security and verification for new EDA tools.
chips. . Establish a robust supply chain for heterogeneous

. Significant RC delays and signal issues in large interconnects. integration.

. Low yield in monolithic 3D technologies. . Enable small-volume production and prototyping to

encourage innovation.
. Limited availability of EDA tools for effective 3D integration.
. Apply co-design strategies to manage thermal integration
e  Lack of access to small business and university facilities, which and reduce required energy in 3D and monolithic

hampers innovation. architectures.

. Utilize novel materials and advanced techniques for high-
yield monolithic 3D integration.

. Integrate memory technologies like NVM in 3D
architectures to reduce latency and energy consumption.

Major Tasks/Milestones ‘ Metrics Targets Timeline
. Quick turnaround time for R&D
Development of standards, . Adoption time . 3 vears
including pin maps - e  Cost reduction y
. Adoption of standards
. Complexity/runtime
accuracy
3D native EDA tools . ¢ Reduction in design time and risk, 3-5 years
e Ability to capture thermal Improvement in runtime accuracy
issues and thermal
optimization
. Voltage noise . Maintain voltage noise within 5%-
. 0,
Power dellvery and thermal . Temperature (transient 10% 3-5 years
management and steady-state) . Power efficiencies larger than 95%
. Power loss . On-die temperatures <80°C
. Prototyping capability
Domestic fab/fablet . Cost . Build PDKs, libraries for chiplets 5 years
. Production capacity . 3D stacks
. Monolithic 3D
. Thermal dissipation .,
Development of novel materials capability ¢ ezl O pErEs 5 years
. Yield for monolithic 3D . Increase thermal conductivity

Stakeholders and Potential Roles in Project

Stakeholder Role

. E.g., integration/assembly vendors/suppliers

Product Manufacturers/Suppliers
PP . Provide small-scale manufacturing/3D packaging capability at reasonable cost

End Users/OEMs . Negotiate with stakeholders for providing IP resources

. Models and frameworks for benchmarking different 3D technologies

. . Cross-layer optimization methods to satisfy runtime thermal constraints
Academia

. Provide workforce that is knowledgeable in advanced 3D packaging and monolithic 3D
integration

. Development of novel materials, thermal solutions, simulation capability for temperature,

154ultiphysics
National Laboratories e  Lead support; act as a support center for academic community

. Lead development of standards for ease of adoption of 3D heterogeneous integration (3DHI)
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. Financially support the supply chain

Government . Establish ecosystem providing design and prototyping capability

Required Resources Cross Collaboration Needs of Working Groups

. Algorithms and Software: Develop new design, new
algorithms

. Power and Control Electronics: Develop new design, new
power paradigm

. Manufacturers/Suppliers: Funding and availability of users, . Metrology and Benchmarking: Understand and mitigate
potential tax incentive by government failures

. Academia: Test equipment for validation, funding for prototyping . Education and Workforce Development: Train next-
and education generation workforce in chiplet design and test flow, chip
stacking, and monolithic 3D integration. As 3D native tools

¢ National labs: HPC equipment are developed, the workforce should also be familiar with

o Government: Funding and resources such as real estate, water, them and 3D-specific design/test methodologies. With
and electricity; tax incentives for using national these advanced technologies, the boundary between
vendors/suppliers package and die designs is less clear. New educational

materials should be developed to consider these
characteristics. As domestic fabs for chiplet design and test
flow technologies emerge, they will need more workers in
diverse fields, including electrical engineering, mechanical
engineering, materials science, and chemistry.

Table 50. Action Plan for 3D Monolithic Integration

Scope

Technology for Energy

Efficiency 3D Monolithic Integration

. Monolithic inter-tier vias (MIVs), interlayer dielectric (ILD) interconnect

. Alternative low-temperature devices, processes (CNTFETs, NRAM, ReRAM, rapid annealing
Technologies of Interest: [e.g., thermal, laser, other])

. Thermal coupling between devices integrated on one another; may be more challenging (need
to design for thermal coupling).

Challenges Addressed ‘ Solution Pathways

* Reduction of RC delay, interconnect length. . Develop MIVs for improved data transfer, reduced RC delay,

. Faster access to upper or lower tiered device (memory, logic, and significant improvements in energy savings.

other in different tier). . Enable mixing of process technologies (logic + memory,

. Reduced footprint vs. co-planar solution. logic + logic, logic + analog, etc.).

. Thermal management for 3D ICs. . Co-design 3D monolithic architecture with thermal
R TSV RC delays. performance and software.

Major Tasks/Milestones ‘ Metrics ‘ Targets Timeline
. Adoption rate of new . Achieve industry adoption
standards . Ensure compatibility with current
. Compatibility with existing leading-edge fabrication processes
Standards development fabrication processes . Develop guidelines that simplify Varies
. Ease of integration into integration into any standard
existing manufacturing semiconductor manufacturing
environments environment
. CNTFETSs (low T), NRAM (SRAM
. Low-temperature replacement), FeFETS, low-temp. Certain
processes compatible with silicon (CEA-List), junctionless technologies are
Fabrication of monolithic FEOL transistors (UIUG; IIl-V materials on available now,
integration BEOL for RF application, carbon NRAM integration,
¢ MIV process development nanowires, GaN devices) ReRAM
s Thermal mitigation e  Low-temp. annealing methods: integration
Laser, quick thermal anneal without
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distribution to bottom layers,
microwave annealing

. Thermal simulation, o See Action Plan for Vertically
device performance, EDA Integrated Devices
Isao(;t‘ﬁaée (el T2 . Better probing techniques (finer
. granularity, deeper), focused ion :
- nan Var
Co-design and tests «  Conventional test beams (FIBs) for SEM/TEM for ares
methods are not analysis. X-ray/acoustic imaging:
applicable (non-idealities look at devices at a given depth,
of upper tiers) something high throughput.
Stakeholders and Potential Roles in Project
Stakeholder Role

Focus on FEOL processes by testing chips and wafers; extend to commercial foundries for

Product Manufacturers/Suppliers
scale-up.

Drive demand for efficient and low-energy chips through NMI; facilitate efficient logistics for

End Users/OEMs intra-fab shipments.

Lead in demonstrating technology, developing new materials, optimizing designs, and training

Academia ) ;
the next generation of engineers.

Serve as early technology adopters and supporters, providing MPW access and fostering the

National Laboratories commercial availability of advanced technologies.

Support research and technology transfer between public institutions and private industry,

Government : ) A
ensure funding and foster inter-sector collaboration.

Required Resources ‘ Cross Collaboration Needs of Working Groups

. Universities and Start-ups: Setting up fablet facility for innovation . Circuits and Architectures: Develop new designs.

and practical applications. . Power and Control Electronics: Implement new power

. Industry: Circuit design, EDA, and fabrication resources to enable distribution (ultra-thin dielectric).
the technology, and new PDKs that support the technology (see

Action Plan for Vertically Integrated Devices). ° Algorithms and Software: Develop new computing

paradigm.

. Academia: Education and workforce development, such as
training students on important challenges (design for thermal
integrity, testing). . Metrology and Benchmarking: Implement new reliability test

. MEES: Implement new process development.

. National Labs: HPC for materials and process development (EDA, | e See Action Plan for Vertically Integrated Devices for
simulation at material level of device, computation). additional considerations.

2.3.5 Thermal Management

The advancement of next-generation, energy efficient APHI technologies necessitates an
intensive focus on thermal management strategies at both the die and system levels, the latter
of which is detailed in the Power and Control Electronics (PACE) chapter. With the ongoing
increase in the density of interconnects, transistors, and memory cells, there is a corresponding
rise in power density, which essentially refers to the amount of heat generated per unit area.
This increase in power density leads to greater energy consumption due to heightened device
and chip parasitics and increases the demand for effective heat dissipation solutions. This
problem is further exacerbated by chip stacking, which concentrates the power density and heat
of multiple chips into the footprint of just one chip (IEEE HIR 2021).
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Fundamentally, power consumed in the circuitry is manifested as heat that must be dissipated,
and while lower-resistance interconnects, memory cells, and transistors will help, heat
generation remains inevitable due to the inherent switching energy and contact resistance of
these components. With the shrinking of transistor devices, DRAM, and other components, the
leakage current is increasing, as is the heat produced (Kao, Kuo, and Dai 2016). The
performance of all cell types—logic, memory, and even interconnects—worsens with increased
heat (Weste and Harris 2011), while energy consumption rises. For example, DRAM operating
outside its nominal temperature range can have a performance degradation of 8.6% and
increased power consumption (due to leakage) of 16.1% (Zhang, Sarvey, and Bakir 2014). It is
paramount to devise secondary methods for heat removal at the device/die and system levels,
both to maintain device performance and to avoid unnecessary increases in energy
consumption.

Chip stacking and 3D monolithic integration are inevitable, as are the complex heat-removal
technologies that must be developed to enable them and boost their energy efficiency.
Temperature coupling between device stacks only worsens when they are integrated vertically
(Sarvey et al. 2015; Zhang, Sarvey, and Bakir 2014). Additionally, heat removal is more difficult
in 3D IC designs, given the increased distance from the heat spreader (Kumar and Naeemi
2017). To help enable the next revolution in microelectronics packaging, the APHI working
group focused on interfacial heat removal technologies (called thermal interface materials
[TIMs]). The sections below describe the background, technology comparisons, challenges, and
solution pathways for TIMs.

Thermal Interface Materials

In conventional packaging, heat generated by the device is transferred through the
interconnects and BEOL layers, which may have heat-isolating properties, toward the heat
spreader and subsequently to the heat sink. However, when chips are stacked, the path for heat
to travel from the inner chips to the heat spreader lengthens, exacerbating thermal management
challenges. To mitigate these heat conduction issues, TIMs are placed at the interfaces
between chips to help facilitate heat transport toward the heat sink for eventual removal from
the system. The use of TIMs is crucial for mitigating localized hot spots, which tend to be less
energy efficient and can degrade overall device performance.

TIMs must be thermally conductive to remove the generated heat. They should also be capable
of completely filling the gaps between contact surfaces, accommodating the surface roughness
of the contacting layer, and remain mechanically stable through numerous thermal cycles as the
device powers on and off. TIMs have two distinct levels: TIM 1 which conducts heat from the die
to the heat spreader (typically made of copper), and TIM 2, which facilitates heat transfer from
the heat spreader to the heat sink (Jensen and Lasky 2020). The choice of TIMs usually
depends on their thermal conductivity and elastic modulus to ensure efficient heat management

As shown in Table 51, TIMs can make significant improvements over the state of the art in
terms of materials’ thermal conductivity and can incorporate engineering features that decrease
the temperature of the chip overall. However, significant challenges related to TIMs remain, as
discussed below.
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Table 51. Performance of Advanced Thermal Interface Materials Compared to Baseline Technologies

Commercial
Benchmark
Energy
Performance

Commercial
Benchmark
Product

Baseline
Energy
Performance

Timeline
(years)

Performance
Multiplier

Technology
Group

Specified Technology

Liquid metal paste polymer-
(LMP) solder with 7(?h\t/avr/nTa:< based paste, 10 Wim-K 2 5
polymer (Indium- ductivit conductive
based) Eo il ) filler particles
polymer-
Carbon nanosprings 100 W/m-K based paste, 10 Wim-K 10 2
in conductive polymer conductive
filler particles
Advanced polymer-
Thermal CNT-based thermally based paste,
Interface conductive matrix 80/ Tl conductive (A Eio 2
Materials filler particles
(TIMs)
polymer-
Graphene-based 40-90 W/m-K based paste, 10 W/m-K 4-9 2
conductive matrix conductive
filler particles
Nanostructure
engineering to
increase surface 58°C (device Indium 73°C 126 5
contact area of TIM temperature) (~70 W/m-K) ’
with 5.4 W/m-K at 17
CFM air flow

Challenges and Solution Pathways for Thermal Interface Materials
Poor Understanding of Thermal Interface Resistivity

Although thermal interface resistivity is often poorly understood, it likely defines heat removal
characteristics. Advanced TIMs presented in the literature tend to generate excitement because
of the high thermal conductivity of these new materials. However, thermal conductivity alone is
not an adequate performance indicator. Materials such as CNTs and graphene provide bulk
thermal conductivity in the thousands of W/m-K, but there have been no measurements of
graphene or CNT TIMs showing greater than 40—-90 W/m-K. The primary reasons for differences
between theoretical and measured heat transfer are:

e The materials must have adequate contact (lowering thermal interface resistance with the
substrates) to promote heat transfer (Jensen and Lasky 2020).

¢ Material phonon modes need to overlap for adequate heat transfer.

e Heat transfer in certain materials is anisotropic, meaning it varies with direction, which can
restrict heat transfer across different axes (Guo et al. 2021; Refai-Ahmed et al. 2018). In the
case of anisotropic TIMs, interfacial heat transfer can be limited because the heat at a hot

spot cannot be conducted laterally. In contrast, isotropic (direction independent) heat

transfer can be approached through alignment technologies such as embedding Carbice™
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CNT forest (anisotropic heat transfer) in an aluminum “sandwich” (isotropic heat transfer)
(Green, Prinzi, and Cola 2016).

Ensuring the best possible surface contact is important for maximizing heat transfer. For
instance, increasing the surface contact area of the flexible TIM between the IC and heat sink
significantly reduces temperature compared to normal higher-thermal-conductivity TIMs, as
thermal resistance is a function of surface area (Guo et al. 2021). Nanoengineering the IC
surface and heat sink to promote increased thermal transfer via improved interfacial
conductance will complicate the manufacturing process. However, it is likely needed to help
ensure adequate heat removal in 3D ICs.

Because interfacial contact and resistance is the primary indicator of whether a TIM with good
thermal conductivity will promote adequate heat removal, the heat transfer process must be
better understood, tested, and simulated. Conventional heat measurements for thermal
conductivity should be performed, but there must also be adequate device performance
demonstration with each TIM integrated. An industry-standard device or device architecture
should be implemented to allow standardized testing for publication of new TIM specifications
that will be adequate for next-generation 3D ICs. All of the considerations listed above could be
added into EDA software via a TIM PDK for improved thermal modeling.

Compatibility With New Advanced System Cooling Technologies

Conventional technologies utilize a heat sink combined with forced air flow for removing heat
from the system. While this approach is viable for 2D electronics, it may not be adequate as the
industry moves into 3D ICs. Next-generation cooling techniques—such as microfluidic cooling,
immersion cooling, and direct liquid cooling—are in development and need the help of
advanced TIMs. The TIMs must be compatible with the cooling environment.

Mechanical Durability Through Coefficients of Thermal Expansion Mismatch Affecting
Long-Term Thermal Cycling Stability

Effective TIMs must be capable of accommodating the differential coefficients of thermal
expansion (CTE) between the two surfaces they connect. The CTE measures how much a
material expands when heated and contracts when cooled. This differential in expansion rates
can lead to mechanical stress during thermal cycling, which is the process of repeated heating
and cooling that occurs in operational environments (Guo et al. 2021). Conventional materials
such as Cu, In, and Al, which have great thermal conductivity, lack the malleability to adjust to
thermal expansion and contraction when in contact with surfaces. These more rigid materials
also will have more trapped air pockets, which reduce thermal transport and increase localized
heating. This in turn leads to lower thermal cycling lifetimes. However, materials that do have
the ability to survive the changing expansion—such as Carbice CNT forests with polymer,
CNT/graphene pastes, and high-elastic-modulus materials—will be better suited for long-term
stability (Green, Prinzi, and Cola 2016; Guo et al. 2021).

Action Plan for Thermal Interface Materials

Table 52. Action Plan for Thermal Interface Materials

Technology for Energy

e Thermal interface materials
Efficiency
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Technologies of Interest:

Thermal interface materials (TIM1-2)

Challenges Addressed

Solution Pathways

immersion cooling

Major Tasks/Milestones

Gather data to bridge the gap
between bulk material properties
and system-level performance,

. Interfacial adherence and defect impact on heat removal
. Testing and simulation standardization

. Compatibility with advanced cooling technologies such as

Metrics

. Design materials whose intrinsic properties can be
simulated. Contemporary example: TIM based on elastic

CNT on aluminum backbone.

. Explore in situ, real time interfacial monitoring.

. Scale technologies that enable mapping and simulation of
thermal resistance distribution at the real-application

interface.

. Expand focus on TIM for ongoing consortia working on

material design.

. Develop scalable algorithms that accurately translate
technology-enabled interface mappings into simulations
that reflect the actual distribution of interface resistance in

practical applications.

. Propose standardized testing protocols that transition from
measuring thermal bulk properties to evaluating thermal
interface conductivity, ensuring realistic performance

expectations are met.

Targets

Understand failure mechanism (bulk

Timeline (Years)

gap analysis for engineered
materials and composites.

Stakeholder

performance

and simulation tools that enhance
interface performance and throughput

Role

enhancing insights at the - properties vs. system level) 2
interface through in situ
monitoring.
Understand and list optimal I . . . .
material properties (at bulk and _ Distill a list of optimal material properties 9
. for TIM
system interface).
Toxicity, durability in Non-toxic, reliable thermal performance
Check chemical compatibility with advanced cooling under advanced cooling conditions such o5
cooling environment. environment (e.g., immersion as immersion cooling (dielectric fluid or
cooling) refrigerant coolant)
Communicate findings between — . - .
standard-making entities (NIST) Proper communl(_;atlon White paper/gwd_ellne publlshed _by o5
. between NIST and industry NIST on TIM design and application
and industry.
Develop technology for mapping
Develop technology and Accuracy, resolution, thermal interfaces that integrates with
algorithm for interface mapping throughput, and compatibility simulation tools, enabling high- 2-5
(interface thermal resistance). with in-situ testing throughput design of thermal
management solutions
Develop standard set of tests to Testing including over-time performance
use (inter-agency NIST, DOE, - to evaluate 3-6
ASHRAE, etc.). reliability of TIM
Overall Goal: Design material . Improve system-level thermal resistance
with optimal properties. Conduct B LA ity lifareree through the development of technology
system-level thermal 5-10

Stakeholders and Potential Roles in Project

Product Manufacturers/Suppliers

Encourage to do more research via, e.g., government providing findings or potential tax benefit.

End Users/OEMs

Provide wish list for DOE or assigned national laboratory.

Academia

sinks or thermal redistributors.

Find better and easier equivalent or alternative testing method for HI.

Identify novel thermal materials suitable for coating on chips and packages to serve as heat
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. Provide examples or standards for testing routine and equipment.

National Laboratories
. Provide testing capabilities for researchers and suppliers.

Required Resources Cross Collaboration Needs of Working Groups

e Government funding for material design innovation and e Power and Architecture: Consider thermal management in
manufacturing upscaling. designs; have better thermal understanding when running
simulations.

. Access to HPC server application testing facilities.
. Materials and Devices: Define requirements that materials

¢  Reliability, energy efficiency, and ease-of-use (modularity, must meet to be selected for use as TIMs at different layer
sustainability) standards. levels.

¢ Fundingfor fundamental research and tools on e Education and Workforce Development: Develop updated
understanding/improving interfacial thermal resistance and on tools and comprehensive education for industry.
low-energy, scalable manufacturing methods. Universities should offer cross-disciplinary training in

e Measuring and testing equipment and tools for understanding materials science, heat transfer, mechanical engineering,
interface performance, reliability, energy efficiency, and ease of and simulation to better prepare system engineers for
use. industry challenges. Enhancements may include developing

o ) cross-disciplinary curricula, establishing endowed chairs in
. Shared findings, best practices, and handbook. APHI, and creating university/lab centers.

2.3.6 Packaging Electronic Design Automation/Process Design Kits/Assembly
Design Kits

Historically, packaging design focused on providing mechanical stability and facilitating power
distribution and data transfer through features like ball grid arrays on printed circuit boards and
redistribution layers (RDLs). With the advent of more complex devices, however, the shift
toward 2.5D components using embedded multi-die interconnect bridge (EMIB), interposer
technologies, and 3D integration necessitates advanced EDA tools. These tools are essential
for managing increased interconnect density, refining design protocols, and enhancing
simulations to keep pace with evolving packaging technologies (Acito 2019; de Geus 2023).

Today, the chip industry navigates between two distinct design paradigms. The first
encompasses traditional SoCs connected to PCBs. The second focuses on shrinking
interconnects near the IC scale for multi-stacked chips, such as flip chip and hybrid bonding
used in High Bandwidth Memory (HBM), and for stacked systems like DRAM Cache, both of
which necessitate innovative packaging techniques. The use of diverse IP blocks, defined as
reusable units of logic or data such as microprocessors or memory arrays, has led to a
proliferation of design capabilities, complicating the design and simulation processes.
Additionally, multi-domain components such as analog, digital, RF, and photonics increase
design complexity. The scope for simulation now extends to multi-physics problems that involve
electrical, mechanical, thermal, optical, and acoustic properties. Consequently, issues such as
heat and electrical crosstalk, which have become more prevalent in design layouts, modeling,
and device performance simulations, must be thoroughly addressed. EDA software must
continually evolve to accommodate these increasing complexities in design and simulation.

Because EDA is a software-based tool, it does not directly affect the overall energy usage of
microelectronics. However, it does help reduce microelectronics’ energy consumption through
advanced design and simulation, which creates effective, energy-efficient devices with improved
performance. Beyond this, EDA reduces costs through prototype failure-mode analysis.
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Challenges and Solution Pathways for Packaging Electronic Design
Automation/Process Design Kits/Assembly Design Kits

System Technology Co-Optimization

System technology co-cptimization (STCO) is an approach that extends design technology co-
optimization (DTCO) principles to the system level. It deconstructs the conventional SoC into
distinct functional components—such as 1/0, cache memory, and HBM—and optimizes their
integration on a silicon die, typically using chiplets (Moore 2023; Siemens 2021). This method
facilitates collaboration between design and manufacturing teams to refine IP block
functionalities, communication protocols, and interconnections. Similar to DTCO, where circuit
design and process teams work together to optimize device elements like transistors, STCO
leverages chiplet-based designs or standardized interconnect I/O layouts. This approach
enables the assembly of advanced circuitry that delivers enhanced performance and reduced
power consumption.

There are two main benefits of using the STCO technique. First, it allows for improved design
through standardization, and second, it facilitates early analysis to discover related issues in the
design phase rather than in prototype hardware. Simplifying the components and standard
interfaces (I/O interconnects) should enable development of an early package prototype with
enough information for initial performance simulations, especially when combined with EDA
software assembly design kits (ADK) that provide design rules for chiplet devices with
associated simulation parameters (Siemens 2021; Heinig and Fischbach 2015). With the aid of
simulations, the design and manufacturing teams can work to improve all components
simultaneously for optimal performance and energy efficiency. As a result, STCO will enable
more energy efficient 3D stacked architectures.

Standards for Package Assembly Design Kits With Vendor Support

Process design kits (PDKs) allow for continued improvements in the performance of device
architecture through collaboration with foundries and designers. Current 3D design software is
limited to specific packaging types requiring high-effort, user-specific scripting to enable
advanced layouts (Heinig and Fischbach 2015). Without specific information about the design
and manufacturing of components, the package designer cannot adequately simulate the
electrical, thermal, or mechanical behavior of the package. To help enable package and device
simulations, an ADK is needed.

ADKs contain design rules and simulation information analogous to a PDK. They contain the
manufacturing steps, including the assembly technologies used (e.g., copper wires), the
materials properties relevant to simulations (such as mechanical, thermal, and electrical); the
geometrical information for interfaces such as input/output for die and substrate technologies;
and, lastly, design rules such as component clearance, interconnect sizes, and pitches. With all
this information, along with EDA and STCO, package designers and manufacturers can
complete initial prototype design and simulations for the next generation of packaging
technologies. This information should also enable 3D chip stacking and simulate the relevant
challenges. Importantly, standards should be set for assembly design kits, such as utilizing
chiplet technology for interconnect schemes, that can be bought or shared with vendors. This
standardization is particularly important for managing thermal challenges associated with device
stacking (Kao, Kuo, and Dai 2016).
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Enhancing Simulation Algorithms To Reduce Computational Demands

As the industry adopts a "shift left" approach—moving testing and verification earlier in the
development process—through STCO, there is an escalating need for sophisticated simulations
that can accurately model the multi-physics aspects of devices and packaging, including heat,
power, and energy consumption. While traditional CPU and GPU cores generally suffice for
these tasks, there is room for optimization. Recognizing the specific requirements for multi-
physics simulations, the development of specialized algorithms and dedicated hardware
architectures—such as CIM or DSA—could drastically reduce both simulation times and energy
costs. This targeted approach would enable faster development cycles for prototypes, yielding
devices with markedly better performance and energy efficiency compared to existing solutions.

Artificial-Intelligence-Driven System-Level Optimization

System-level optimization in packaging design involves multiple teams, including device
manufacturers, designers, IC layout teams, and ADK providers. Leveraging Al in this process
can streamline the design, enhancing both performance and energy efficiency. Al has already
proven effective in EDA for optimizing complex architectures, such as next-generation
processors (de Geus 2023). By implementing Al, the design time for intricate projects, like
GPUs, has been dramatically reduced—from the traditional months-long process requiring
extensive engineering resources to significantly shorter periods (Hilson 2023). Utilizing Al
specifically tailored for package design could accelerate prototype development, minimizing
both time and resource expenditure, and fostering quicker iterations and enhancements in
package solutions.

Action Plan for Packaging Electrical Design Automation/Process Design
Kits/Assembly Design Kits

Table 55. Action Plan for Packaging Electrical Design Automation/Process Design Kits/Assembly Design Kits

Technology for Energy Electronic Design Automation for Packaging.

Efficiency
. Chip-stacking, 2.5D and 3D technology. Efficient handling of system complexity.
. Multi-domain floor planning (digital, analog, RF, and photonic ICs)
Technologies of Interest: . Co-design/simulation and verification of different domains from different foundries

. Mixed-signal (digital/analog/optical) functional verification

. Package design: mechanical, PCB

Challenges Addressed Solution Pathways
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. Optimize STCO to include component model, design full
system, and handle interface where packaging meets chips.
Designs are first optimized with individual DTCO flows for
each 3DHI layer. Chips are integrated with
packaging/interconnect layers using DTCO + packaging co-
design. System is combined and optimized through the
STCO flow to create the final optimized stack.

. Develop and adopt standards for package assembly design
. ) . kits that different vendors can support. Standard pin maps
. 3DHI challenge: Moving from D(esign)TCO to S(ystem)TCO can give DC/AC models for each option.
* Standard pin map options . Optimize simulation algorithms to reduce reliance on CPU
o EDA algorithms for simulation of the full system and GPU cores, thereby decreasing power and memory
usage, and incorporate neuromorphic computing and deep
learning techniques to enhance problem-specific

processing efficiency.

. Al utilization at the system level

. Implement Al-driven optimization across system levels to
enhance cost-efficiency and performance, focusing on
analog and digital design optimization, and design
verification. Extend optimization efforts to encompass all
domains, including packaging, to achieve comprehensive
improvements in reliability, yield, thermal management,
and signal integrity.

Major Tasks/Milestones ‘ Metrics Targets Timeline
Technology definition for Size, height, technology for . - B
Sk PCB/packaging Library standardization for EDA 1-3 years

Demonstrate how STCO can be
applied to a 3DHI phased array
antenna to consume less energy

Size, weight, and power

(SWAP) 10x improvement 3-5 years

2x improvement (cost) and 10x
improvement (efficiency)

Al-driven, system-level

RN Cost and Efficiency
optimization

5-7 years

Simulation time, memory,
Improving solution algorithm compute power, energy, 100x-1,000x improvement 8-10 years
thermal load

Stakeholders and Potential Roles in Project

Stakeholder Role
. EDA vendors

P Manuf li
roduct Manufacturers/Suppliers . Define, develop the software

. Help with standardization
. Validate software for simulations
End Users/OEMs . Provide feedback on new designs/design flow

. Work with foundries

. Train students in system knowledge (3DHI, APHI, packaging)

Academia . Fund PhD research (new algorithms, designs, Al)
National Laboratories . Develop HPC comparison, new algorithms, and Al development
Government . Fund academic/national lab research

Required Resources Cross Collaboration Needs of Working Groups

. Partnerships between EDA/partner manufacturers for continual

development (loaning parts, paying for parts, funding for e Algorithms and Software: Collaborate on minimizing energy

hardware evaluation). HPC resources for improvements in use for EDA simulation.

algorithm design for simulations. e Circuits and Architectures: Develop EDA solutions. Circuits
e Funding for initial development of Al, algorithms, and software. and Architectures solutions will influence APHI solutions

(e.g., PDK will have an impact on assembly design kit).
. HPC center for algorithm innovation (national lab).
. Education and Workforce Development: Implement EDA
e  Dedicated centralized resource at national lab or center for R&D. tool training. Partner validation and verification.

Ease of access with IP protection (CRADA).
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2.3.7 Conclusion for Advanced Packaging and Heterogeneous Integration

The Advanced Packaging and Heterogeneous Integration (APHI) chapter of the EES2 roadmap
emphasizes the crucial role of advanced packaging technologies in enhancing energy efficiency
across the semiconductor industry. Vertically integrated devices and system-level cooling
strategies represent key areas where significant advancements can lead to major energy
savings. By employing energy-efficient 3D technology and optimizing the thermal interface
materials, APHI aims to manage heat more effectively, thus reducing the thermal challenges
associated with dense packing of high-performance chips.

Innovation in APHI is targeted towards solving scaling challenges for optical interconnects,
enhancing intra-chip signal integrity, and increasing the energy efficiency of memory access.
The deployment of these technologies demands rigorous EDA improvements to support new
ADKs, facilitating a streamlined pathway from design to simulation and, ultimately, to
manufacturing.

To meet energy-efficiency goals, EES2 emphasizes the need for accelerated development and
integration of novel packaging solutions, such as the establishment of dedicated R&D facilities
that allow for rapid prototyping and early-stage testing of APHI technologies. Such initiatives are
vital for overcoming current barriers in thermal management, material integration, and system-
level integration, ensuring that advanced packaging can keep pace with the evolving demands
of modern computing environments.

Overall, advancing APHI technologies is about not just enhancing individual components, but
also ensuring a synergistic integration that maximizes overall system performance and energy
efficiency. The roadmap sets a clear directive for industry-wide collaboration, standardized
practices, and focused R&D efforts to rapidly bring these critical technologies to market
readiness, aligning with the urgent needs for sustainable energy management in the
semiconductor sector.
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2.4 Algorithms and Software

Significant opportunities exist for reducing energy consumption in computing through improved
algorithms and software. As shown in Figure 6 in the Introduction, there are about 20 orders of
magnitude in computational energy consumption between representative large application
programs and the individual instructions being executed (Shankar 2023). This domain bridges
architectural designs and the software that maps to them. Energy improvements in software
must come from an understanding of what the software does and how, as well as finding means
to accomplish software tasks more efficiently, either purely through improved algorithms or
through improvements in both the underlying machine architecture and the algorithms
implementing problem solutions on that architecture. The large-scale applications benchmarked
in Figure 41 are from distinct problem domains, and algorithmic improvements that reduce the
energy cost of training of large-language models may have little or no impact on the energy
used for spike protein simulation, and vice versa. This chapter is divided into four sections after
a brief summary of the key aspects of Algorithms and Software and the working group that
contributed to the key aspects: 1) energy efficiency in algorithms, mainly as applicable to
machine learning; 2) software for general purpose architectures (e.g., CPU and GPU); 3)
software for special purpose architectures (e.g., ASIC); and 4) measurements, tools, and
benchmarking to enable energy efficiency.

Working group methodology

As described in Section 1.4, after an initial definition of candidate technologies for inclusion in
the roadmap, members of the Algorithms and Software working group performed an initial
estimate of the potential energy efficiency improvement factor of the various technologies and
the timeline over which the
estimated energy efficiency can

. . 450

be achieved. This assessment x 1
. . . o e for d in-specific and architectures
(with results shown in Figure 41), K 400 o
. i i < Reduced energy for
although subjective, provides P ML algorithms
general directions for a quick &
review. Specific points to be E 300
considered: 1) it is not possible to 2 50
accurately quantify potential S
|mpr0vements for algorlthms and 5 200 Algorithm-specific ene;gy efficiency (tooling)
software not yet implemented, ﬁ 150
and 2) the expected gains are 2
more a curve than a point in time u 100
because real software is = 50 e e Commnlcation protocols
. . rivacy and security

Contlnua”y and |ncrementa”y E Algorithm-specific enirgy :ﬂlclillicy [ ] \. Compul:lonal reliability
refined over time. The diamonds °© 0 ontpe . >

o , () 1 2 3 4 5 6 7 8
in Figure 41 represent a collection YEARS

of technologies that were
expanded in later meetings. For
ease of organizing this chapter,
technologies have been grouped
into topics as shown in Table 53 and are discussed in detail in the proceeding subsections.

Figure 41. Algorithms and Software working group potential
efficiency improvement factor and timeline initial assessment.
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Table 53. Algorithms and Software Technology Grouping

Technology group Technology

Tooling
Benchmarking

Algorithm-specific energy efficiency

Meta-learning of hyperparameter optimization

Physics-informed machine learning models for scientific
computing

Continual learning (sequential training without
catastrophic forgetting)

Algorithms for machine learning | Bottom-up sparse machine learning model development

Benchmarking hyperparameter optimization methods

Benchmarking and methodology to quantify training and
inference costs

Energy-efficient alternative training methods

Approximate/efficient matrix/tensor multiplication

Languages compilers and run-time systems

Privacy and security

Software for conventional Computational reliability

architectures Communication protocols

Data compression

Precision of data types

Domain-specific languages

Adoption of existing compute cores in domain-specific

Software for domain-specific and | 2TCnitectures

emerging architectures Reusable memory access control architecture

Compute-in-memory

Tightly coupled architecture and software co-design

Table 54 summarizes the most significant identified energy efficiency opportunities that can be
achieved through advances in algorithms and software.

Table 54. Key Takeaways for Energy Efficiency Opportunities in Algorithms and Software
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e Continual learning, in which ML systems can
@/?ﬂ : build on knowledge gained without retraining
7“‘_ : from the ground up (incremental learning)
analogously to biological systems.

e Bottom-up sparse ML model development, in
which the larger ML model is made up from
smaller models that are trained for more narrow
tasks and combined as a “mixture of experts” or

Improved - hierarchical model of knowledge.

efficiency in X e Meta-learning, or “learning to learn,” for
machine e optimization of model hyperparameters (such as
Iearn!ng S number of nodes, number of layers, learning
algorithms rate), which can greatly reduce the effort

required to develop efficient models.

e Physics-inspired ML models, in which the neural
network model incorporates physics models,
such as differential equations, and can be used
to solve problems in applied mathematics with
the potential to enhance or displace finite-
element solvers, greatly accelerating numerical
problem solutions.

¢ Domain-specific languages for conventional as

&) (G well as new and emerging architectures, which
) 0] can express a problem solution in high-level
Software for % operators that are amenable to intermediate
domain-specific representations that can be better targeted for
and emerging machine-level optimization.
architectures " e In co-design with advanced architectures,
: \%( o exploiting compute-in-memory, data

compression, and data types for more efficient
brain-inspired representation.

e Languages such as Mojo that aim to replace
interpreted Python with a source-code-
compatible, incrementally compiled alternative.

Languages,
compilers, and e Better automatic code optimization to exploit
runtimes machine parallelism and maximize the speed

and energy benefit of cache memory.

e Application of machine learning to code writing
e and code optimization.
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Grand challenges are to:

o Optimize energy efficiency of algorithms by improving use of parallel resources and
minimizing data movement.

¢ Improve advanced profiling tools and benchmarking to measure software’s energy
impact.
¢ Integrate new hardware architectures into existing systems and their codebases within

commercially tolerable compatibility constraints and continue to measure and
benchmark energy estimates.

e Reduce the energy consumption of machine learning algorithms with new strategies in
training and inference stages.

¢ Advance fundamental understanding of intelligence and learning to realize the
transformative potential of machine intelligence. Machine learning systems are still far
from the observed performance of learning in humans and other animals.

2.4.1 Algorithm-Specific Energy Efficiency Tooling and Benchmarks

A comprehensive capability for systematic profiling, enabling the performance and energy
impact of software to be accurately measured, is a prerequisite for achieving the aim of
benchmarking energy performance for specific algorithms in a wide variety of computing
systems and environments.
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2.41.1 Tooling

For traditional architectures, there
are three components to energy use:
movement of instructions (program)
to the CPU, executing instructions in
the execution units, and reading
(loading) data from and writing
(storing) data back to memory or
external devices such as network
and storage controllers. If power is
measured during the execution of
the program, the measurement
captures the energy used in all three
components. However, if the
temperature distribution is
measured, it will represent different
distributions of energy as the heat
distribution is an effect caused by
computing. Thus, to understand and
analyze software for different
workloads, a more detailed and
component-level measurement is
desired.

The current state of the art for
measuring energy usage of
algorithms is inadequate. For
example, the Intel Runtime Average
Power Level (RAPL) facility is
normally used for thermal
management of microprocessors but
is only able to provide an aggregate
estimate of power over the whole
chip or a whole core at an interval of
about 1 ms. Knowing the energy
consumption at a more detailed level
is desirable but faces some
fundamental challenges. For
example, consider the very simple
case illustrated in Figure 42. In this
example, the function foo(*a, *b)
simply returns the sum of two
variables whose addresses are
passed to it. In the first call to foo,
the local cache is “cold,” and the
processor must fetch the arguments

int foo (unsigned int *a, unsigned int *b)

{
}

*

return *a + *b;

(a) Example C function foo(*a, *b)

; rl - r4 input registers,; r0 return reg

_foo:

1d [%rl], r5 ; *a - > register 5
1d [%r2], ré6 ; *b -> register 6
add %r5, %r6, %r0 ; sum in return reg.
ret

(b) Compiled assembly code for foo

L1 Instr. Cache

| Instruction Queue |<I -

v
| Instruction Decode |

i S
| Scheduler |
L2 Cache
v v
LD
Int FP
L1 Data Cache

(c) First call to foo

L1 Instr. Cache

| Instruction Queue J

L 4

| Instruction Decode |

Memory

v

Memory

v i

| Scheduler |

L2 cache

LD

Int FP

ST

L1 Data Cache

(d) Subsequent call to foo

Figure 42. Interaction of software and CPU architecture
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as well as the function’s instructions from the DRAM main memory. On the next call, if called
with the same arguments, the processor finds both the instructions and data in the L1 cache,
and no DRAM activity is triggered. For a 7nm process, the energy cost of DRAM access is 173x
the cost of accessing L1 cache (see Figure 7 in the Introduction), and 43,333x the cost of an
INT32 add, and the energy expended to call foo differs by at least 173x from one call to the
next. Other complications may arise. For example, other functions executed between calls to
foo, or other processes running on the same core, could claim all the available L1 cache space
and cause foo’s instructions and data to be evicted. The energy usage for code at this level of
granularity is a complex interplay of the current workloads being executed by the system, the
runtime environment, and details of the memory hierarchy implementation.

This example illustrates that software meant to probe the energy expended at a granular level
must carefully consider not only the software being probed, but also other workload
characteristics spanning the software and hardware present in the system at runtime.

Modern microprocessors provide subsystems that monitor many details of processor
performance and events during operation, with the Intel Performance Management Unit (PMU)
being a prime example (Intel 2022). These systems do not, however, provide adequate source-
level traceability to facilitate the tooling needed for precise energy measurements. A selection of
sophisticated architecture-specific profiling tools available include the Intel Vtune Profiler (Intel
2023) and Intel Processor Trace (Yagemann 2023), the AMD Research Instruction Based
Sampling Toolkit (Greathouse 2021), IBM POWERS9 Performance Monitor Unit (IBM 2018),
various NVIDIA tools for GPU performance analysis (NVIDIA 2023), and some Linux-specific
tools (Gregg 2023). Generally, these tools provide no facility or very limited capability to perform
energy profiling.

There has been progress in addressing the need for energy profiling recently. Variorum (2023),
which recently won an R&D 100 award, is an extensible vendor-neutral library for Linux that
exposes power and performance monitoring and control of low-level hardware dials. Variorum’s
application programming interface (API) abstracts the details of the vendor-specific
implementations and makes low-level machine performance dials available to both general and
advanced users in a portable manner. In its internal implementation, Variorum uses different
kernel interfaces, such as model-specific registers (MSRs) on Intel and AMD or NVML for
NVIDIA, to expose the available dials on the platform. These dials allow for measurement and
control of various physical features on processors and accelerators, such as power, energy,
frequency, temperature, and performance counters.

Challenges and Solution Pathways for Algorithm-Specific Energy Efficiency Tooling

There is no efficient way to take memory access traces (e.g., cache misses) from software.
Such a capability may be required to perform the detailed energy profiling needed. One tool
which may serve as a starting point is the Intel Pin dynamic binary instrumentation framework
for the 1A-32, x86-64, and MIC instruction-set architectures (Intel 2023a. This framework
performs measurements at run time on the compiled binary files and requires no recompiling of
source code. At this juncture the granularity needed is not well-understood, and requirements
may evolve with the software and architecture over the coming years.

Measurements can be supplemented by energy-aware compute simulation which provides open
libraries for estimating energy at different levels from instruction to system-level. Such software
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simulates a computing chip or subsystem running a workload, collecting energy use data. An
example of this type of software has been developed for GPUs at Purdue University (Kandiah et
al. 2021). Expanding on this approach with other hardware and with an open-source approach
can enable more widespread, fine-grained understanding of energy uses at every stage of a
computation. In addition, a DOE funded effort is developing software for estimating energy
usage of different applications on different software-hardware combinations.

2.4.1.2 Benchmarks

Benchmarks have long been used to provide quantitative comparisons of the performance of
computer systems, starting with the first widely reported “Whetstone” benchmark (Curnow and
Wichmann 1976). The need to incorporate energy efficiency measures in computer equipment
benchmarks has been recognized for more than a decade (Fanara, Haines, and Howard 2009).

An industry non-profit group called the Standard Performance Evaluation Corporation (SPEC)
was formed to establish, maintain, and endorse standardized benchmarks and tools to evaluate
performance and energy efficiency for the newest generation of computing systems. SPEC has
developed the SERT benchmark suite to assess energy efficiency of servers. This suite has
been incorporated into an international standard (ISO/IEC 21836:2020) for server energy
effectiveness metrics (ISO 2020) and has also been adopted as a requirement for the DOE
Energy Star rating system for computer servers (U.S. Department of Energy 2018).

Benchmarks generally attempt to provide a useful measure of a computer system’s
performance by executing a workload that is representative of some important class of real-
world applications. There is a proliferation of benchmarks across many application domains. For
example, in machine learning, the MLCommons organization—a consortium of Al community
researchers and developers from more than 30 organizations—was formed in part to develop
and promulgate benchmarks specific to machine learning. MLPerf is an independent, objective
benchmark suite published by MLCommons used to evaluate training and inference
performance of machine learning systems. The MLPerf Training benchmarking suite measures
the time it takes to train machine learning models to a target level of accuracy. MLPerf Inference
benchmarks measure how quickly a trained neural network can perform inference tasks on new
data.

Challenges and Solution Pathways for Algorithm-Specific Energy Efficiency Benchmarks

To support measurable achievement of the EES2 goal, a suite of benchmarks needs to be
established and used to track performance of systems as they evolve over the next decades.
There are many benchmarks already in existence covering the range of use cases across
domains. A suite of standard benchmarks for assessing energy use, such as the preliminary list
shown in Table 55, will be necessary going forward. The term “benchmarking the benchmarks”
has been coined to describe this selection process, which may uncover gaps and potentially
lead to the development of new more specialized benchmarks for some cases, especially for
low-level performance assessment in coordination with the tooling development. There are
other use cases among the benchmarks identified.

Table 55. Algorithm-Specific Use Cases and Benchmark Suite Selection
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center tax”)

apps

REST API
services

Frameworks MLCommons benchmarks
ML Compilers NeuroBench
Integrating new
Al/ML Al/ML DataPerf
Domain-specific
accelerators
Data pre Training/inference perf tests
P P Models for Science
techniques
Open Source Fleet Bench (Google)
Cloud (“Data Cloud” enterprise Others should be coming out

soon

Rmax
HPL
HPC (pick some target HPGC
kernels)
Graph500 benchmarks
(based on kernels picked)
Enterprise-class
Database
In-Memory TPC Benchmarks (C, E, H, DS)
Databases SpecJBB
Enterprise '
Back-Office SpecVIRT/Vmmark Virtualization
Applications
Supply Chain
CRM

The needs identified for both tooling and benchmarking are best addressed by an industry- or
government-sponsored organization that can fill the following roles:

e Perform benchmarking across diverse hardware and software platforms from multiple
vendors and provide a centralized repository for reporting results.

o Develop energy profiling tools able to operate on multiple hardware and operating systems

platforms and provide and support those tools as open-source solutions, enabling energy

measurements to become commonplace rather than the difficult-to-get data, as is currently

the case.
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o Provide support tools for energy use estimates in computer performance simulations,
allowing highly granular assessment of energy performance throughout the simulated
system.

o Coordinate with industry benchmarking standards groups to disseminate findings and tools
throughout the industry.

o The ability to precisely measure the energy impact of software is crucial for assessing and
enhancing energy efficiency throughout the entire computing stack in order to monitor and
quantify the industry's overall progress toward the EES2 goals, as illustrated in Figure 43. A
combination of benchmarks selected to cover all prominent use cases, as suggested in
Table 55, along with the tools to accurately measure and simulate energy efficiency
performance will provide clear feedback to stakeholders regarding energy reduction
progress and opportunities.

Energy Efficiency Assessment and Tracking

Bottom-up Evaluation of Energy Use Major Industry Segments Major Use Cases Component Use per Execution
(Direct Energy Costs) HPC LLMs Int and FP instructions
Transistors Data centers Image recognition Register transactions
Instructions Desktop/Laptop Modeling & Simulation Cache transactions
Registers Mobile device Web search DRAM access
L1/L2/L3 cache 10T Block Chain /0 access
DRAM Etc. Etc. Etc.
NAND
Interconnects \ J Evaluation (measurement and/or
Ftc. T simulation) of systems using
Selection and weighting of representative benchmarks
+ Laboratory measurements representative benchmarks

+  Simulations

+ Multivariable problem: different hardware elements, architectures, and software use cases

+ Performance of a system and progress toward EES2 goals measured by performance against Total Energy
defined benchmarks

+ Consistent with industry practice for computer system evaluations

Performance

Figure 43. EES2 proposed approach to evaluation of computer system energy performance and progress
toward long-term improvement goals

Action Plan for Algorithm-Specific Energy Efficiency Tooling and Benchmarks

Table 56. Action Plan for Algorithm-Specific Energy Efficiency Tooling and Benchmarks.

Key Technology for Energy Benchmarks and tooling for algorithm-specific energy efficiency measurement and
Efficiency improvements.

Energy efficiency metrics for conventional general-purpose computing systems, domain-

Technologies of Interest = . .
specific accelerators, and emerging compute paradigms.
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Challenges Solution Pathways
. Programmers have inadequate tools for access to . Determine and publish energy expended for operations at a
information about the energy impact of programs or what granular level, similar to the Horowitz (2014) and Jouppi et
programming decisions affect the energy impact. al. (2021) papers table of energy costs, for each
. Modern microprocessors have counter subsystems, but architecture (CPU, GPU, accelerators).
these are generally difficult to access and provide no . Provide profiling tools that enable executed programs to be
information about energy associated with events. measured in terms of these operations, enabling energy
. Architectural limitations inhibit effective means of making measurements for program sections.
energy measurements in some cases. . Provide simulation tools for simulating energy performance
e Inadequate attention is given to energy efficiency during of systems and software, especially during development.
systems and software development. . Define a set of energy vs performance benchmarks
e  The breadth of the EES2 energy efficiency goal requires an covering all prominent use cases in the industry.
industry-wide view of energy performance across a wide . Provide a neutral source for collecting and promulgating
range of machine architectures and software use cases. energy use information, methodology, and tools.
Major Tasks / Milestones Metrics Targets Timeline (years)
Develop ongoing research/metrology
capability to r_epllcate the Horowitz Energy per operation Measurements on mul_tlple_CPU and GPU
(2014)/Jouppi et al. (2021) (Joules/op) processor platforms with different memory 1-2
measurements on any computer P configurations
system.
Develop energy models to map Energy consumption of
counter measurements to energy use - .
. . a program or program Robust profiling tools made available for
and to establish traceability from . 2-3
fragment (Joules per multiple platforms
event counters to processes and .
) . execution)
instructions
Develop benchmark codes for Open-source benchmark codes that work
different algorithm classes to be run Energy ratings similar with the profiling tools to adaptable 3
on different systems as a rating to Energy Star perform benchmarking on a wide variety of
metric commercial systems

Stakeholders and Potential Roles in Project

Stakeholder Role
End Users/OEMs Run tests (particularly for data centers)
Academia Perform most of the research work through graduate student projects
National Laboratories Potentially host the metrology institute

Government Funder
Product manufacturers or suppliers: Make hardware and Circuits and Architectures: because algorithm energy use
software available for testing measurement depends on measurements at the level of
Government: Provide funding and facilitate access to national- circuits & architectures as input.

level computing facilities
Metrology and Benchmarking: these measurements should fit
into some standardized benchmarking framework.

Education and Workforce Development:

- A course similar to MIT 6.016 is needed for “Design for
Energy Performance.”

- Some of the benchmarking studies needed would be good
graduate student research projects.

2.4.2 Reduced Energy for Machine Learning Algorithms

Worldwide, the market for machine learning (ML) and Al applications is growing at an
astounding rate. This trend is expected to continue over the remainder of this decade as shown
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in Figure 44 rising from $208
billion in 2023 to more than $1.8
trillion projected in 2030
(approximately 9x, equivalent to
36.6% annual growth). Thus the
need to find ways to reduce the
energy intensity of machine
learning applications is urgent.

The term artificial intelligence (Al)
broadly means the ability of
computers to exhibit independent
intelligence (as opposed to
executing explicit human-
designed algorithms for solving
specific problems), but practically
speaking, Al systems today are
all based on machine learning
using neural network algorithms.
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Figure 44. Market growth worldwide for machine learning and
artificial intelligence through 2030.The market is anticipated to
grow at a 36.6% compounded annual rate. Source: Statistica 2023

A simple neural network is depicted in Figure 45, comprising an input layer with three inputs, an
output layer with two outputs, and a “hidden” layer with four nodes. The arrows depict
connections between these pseudo-neurons (crudely mimicking biological neurons) and each
arrow has an associated “weight” coefficient that adjusts the influence of each node’s input to its
output. Values of these weights are determined by a training process that combines a set of
example inputs and outputs (the training set) with the goal of making the network produce the
correct outputs for the training set. The trained network may then be used with a wider set of
inputs to produce estimated outputs (with a degree of accuracy that depends on the design of
the network, the size and quality of the training set, and the difficulty of the problem).

Large-scale deep neural networks (DNNs) (neural networks with more than one hidden layer)
have shown impressive performance in many domains, including computer vision and natural
language processing (O’ Neill 2020). Many of the remarkable gains in machine learning
performance have been enabled using increasingly large models, with a growth of about five
orders of magnitude in the number of parameters over eight years (see Figure 46). As a result,
training and using DNNs require immense amounts of energy

and contribute to a large carbon footprint. For example, GPT-3,

with more than 175 billion parameters, reportedly consumed

Hidden
Input
Output

1,287 MWh for training (de Vries 2023).

This growth in model size has been spurred by the discovery
that model performance can be improved by over-
parameterizing, where the number of model parameters
greatly exceeds the number of data points in the training set.
Overparameterization, combined with the ever-increasing

training set sizes needed to reduce statistical error rates, has
caused overall computational growth to increase by at least the
fourth power of the target performance. In practice,

Figure 45. Neural network with
one hidden layer.Source:

Wikipedia 2024
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computational demand has grown even faster (Thompson et al. 2022).

The biggest driver of the increasing energy use of computing is the feedback loop among the
demand for model performance, model size, and adoption of ML applications: The desire for
continuous improvement in performance drives ever-larger datasets, with a corresponding
increase in the number of parameters in the latest models. Successful application of these
increasingly large models leads to massive proliferation of ML applications. Each new success
drives users to desire even better model performance, and so on.

Challenges and solution pathways for machine learning

ML training is much more energy-intensive than ML inference is. However, because a trained
model is typically used for many thousands or even millions of inferences, the total energy cost
of inference for a model may be equal to or greater than that of its training. Hence, reducing the
energy use for both ML training and inference is important for achieving the EES2 goals.

At a fundamental level, the limit to what quality of training can be achieved for a given dataset
and training task for different machine learning algorithms is not known. This theoretical
knowledge gap may have a large impact on the energy cost of training once the limits become
better understood. Even though current understanding is limited, several important observations
have been made that suggest areas ripe for improvement in terms of reducing energy use in
ML:

e The energy cost of training is inversely dependent on training data quality (i.e., training cost
is higher when the training data quality is lower).

o Mechanisms to transfer model learning or model hyperparameters (tuning) from one model
to another are not well-understood; finding effective transfer methods would greatly reduce
energy consumption.

e Precision requirements are different for different aspects of training and inference.
(Generally, higher precision is needed for training than for inference). Adaptive approaches
may be able to optimize precision at different steps of the training and inference processes
to reduce energy use with minimal impact on accuracy.

e Animals can learn from noisy data. In addition, natural learning is robust, retaining inference
accuracy well even when data distribution shifts. Producing algorithms that come closer to
the performance of natural systems (e.g., evolutionary algorithms) will require research and
experimentation. Such nature-inspired algorithms may eventually deliver major reductions in
the quantity and quality of training required.
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¢ Note that, in addition to the opportunities discussed below, ML applications to compilers,
code writing, and runtime systems
are covered in section 2.4.5.1. 101
Opportunities for software gains in
connection with compute-in-memory tom )~
and neuromorphic hardware >0t
architectures are discussed in
section 2.4.6.4.
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o
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2.4.2.1 Energy-Efficient Alternative
Training Methods

106 &

Number of Parameters

There are many potential opportunities to 10t § e
improve the energy efficiency of ML i

training and inference processes. These

are applicable for both data center 1950 1960 1970 1980 1990 2000 2010 2020
operations and edge devices such as Yearof Publication

mobile phones but are particularly Figure 46. Complexity of machine learning
important for the latter due to their limited models.Source: Villalobos et al. 2022
energy budget. Some methods for

improving training efficiency include (list adapted from Verhelst and Murmann 2020):

o Software optimizations: Design algorithms to maximize spatial and temporal locality of
data access in a CPU memory hierarchy; optimize data flow in systolic arrays (such as in the
Google TPU) or in compute-in-memory architectures; or enable wholly new emerging
architectures, such as neuromorphic spintronics (Grollier et al. 2020).

o ML processing: Expand ML processing on edge devices rather than in the cloud. This
would avoid the time and energy cost of transferring huge amounts of data collected at the
edge to data centers.

e Model compaction: Manipulate network topology to co-design the computation with
available hardware resources, avoiding bottlenecks when operating on constrained
embedded processors.

o Model quantization: Manipulate the numeric precision of model weights and activations.
Limited fixed-point representations of eight, four, or even fewer bits have been shown to be
adequate for many inference tasks. Math computations run much faster in reduced
precision, especially on GPUs with Tensor Core support for that precision (NVIDIA 2023a),
while also reducing required memory bandwidth.

¢ Pruning: Selectively remove near-zero weights after or during training. This can result in a
sparse neural network which can be exploited for more efficient storage. It may also result in
more efficient computation when supported by sparse neural processor hardware that skips
zero-valued multiplication operations.

Gains from application of these strategies may be much greater when used together, but
combining them is a research challenge. For example, model compaction may not work well
with model quantization in some instances.
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Additional energy efficiency gains are possible when algorithms are combined with architectural
features during co-design. New neuromorphic architectures are emerging with good systems
and spiking models, but to date, there is no corresponding end-to-end software design stack to
support model adoption for large scale problems.

Another potential direction for efficiency improvement in training is in data preparation, which
often requires manual intervention or bespoke data quality filtering software. Better software
tools for automating data and feature preparation could boost efficiency both by consuming less
development time and by providing better training data quality, allowing a target level of
inference accuracy with less training data.

2.4.2.2 Approximate/Efficient Matrix/Tensor Multiplication

Linear algebra, specifically matrix multiplication, is at the heart of most of the computational
algorithms including machine learning and is generally at the core of both training and inference.
Therefore, methods to accelerate matrix multiplication have the potential to make ML tasks
faster. Extensive efforts have been expended on efficient exploitation of data spatial and
temporal locality when subdividing the work to minimize references to slow external memory,
with differing requirements and strategies depending on the hardware available. Additionally,
lower precision numeric representations have effectively reduced resource demands while
maintaining overall fidelity, suggesting that approximate matrix multiplication could also be
beneficial in many ML applications.

Many approaches have been tried with varying degrees of success. Recently, Blalock and
Guttag (2021) demonstrated an approximate matrix multiplication method called Multiply-
ADDitioN-IESS (MADDNESS) that accomplishes an approximate multiplication with bounded
error 10x faster than other approximate methods and 100x faster than exact multiplication. The
algorithm is especially efficient when one of the two matrices is known beforehand (e.g.,
representing model weights). In this case, the product matrix is approximated using no
multiplications at all, instead using a simple binary tree hash function to compute an index into a
pre-computed lookup table of dot products. Blalock and Guttag (2021) provide a brief
description of and comparison to several other approximation algorithms.

Other methods include extending approximation methods to GPUs and other existing
accelerators, convolutional networks with weight reuse, memory use optimization, and custom
accelerator design for edge devices. Efficiency gained through a combination of advanced
architecture and algorithms is further discussed in section 2.4.6.4.

2.4.2.3 Meta-learning of Hyperparameter Optimization

In machine learning, meta-learning, or “learning to learn,” is a data-driven approach in which
metadata from prior ML is used to assess which approaches have been most effective and
adapt learning strategies accordingly to speed up the learning process. This, in turn, suggests
the possibility of effective machine learning with drastically reduced computational and energy
cost by converging on a trained network with far fewer iterations.

Meta-learning has been explored in a wide variety of applications, including computer vision,
robotics, neural architecture search, hyperparameter optimization, language and speech, and
others (Hospedales et al. 2021). Ansétegui et al. (2021) employed a meta-learning approach to
demonstrate a 50% reduction in the computational cost to optimize arbitrary “black box”
functions using results from each iteration and applying machine learning to the selection of
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next iteration parameters. Such an approach is desirable when the function to be optimized is
itself computationally expensive, for example engineering design optimizations involving
complex simulations.

Hyperparameters are variables that determine the configuration of a neural network, distinct
from the parameters in the dataset that are used for training and inference. The
hyperparameters are set before training a model. Examples of model hyperparameters include
the number of hidden layers in a neural network, the number of nodes in each layer, and even
the type of neural network model to be used. Algorithm hyperparameters include learning rate
and batch size. Hyperparameters cannot be learned directly from the training data but
nevertheless can be optimized with measures such as inference accuracy or training time.
Commonly used methods to optimize hyperparameter values are:

e Bayesian search, which conditions probability of an outcome on the state of current
knowledge.

e Grid search, an exhaustive trial of all possible combinations of the hyperparameters to
determine the best one. Grid search is computationally intensive, especially with large
numbers of hyperparameters (the “curse of dimensionality”).

¢ Random search selects combinations of hyperparameters randomly rather than
systematically to find a near-optimum combination with far fewer trials compared to grid
search. It can be combined with grid search over a smaller search space determined by
an initial random search.

e Evolutionary or genetic algorithms and other heuristic approaches use mutation,
crossover, and selection from an initially randomized set of hyperparameter values to
evolve toward an optimal solution.

o Multi-fidelity searches, especially for very large models, evaluate the hyperparameter
selection on a small subset of the dataset using one or a combination of the other
methods and infer performance over the full dataset from the results.

Each of these approaches presents opportunities for improved learning performance guided by
past experience. Key challenges include application of meta-learning methods to diverse tasks
rather than tasks drawn from closely related tasks, and improving the ability to generalize from
learning metadata. In some cases, computational cost is a challenge, and a number of solutions
have been explored to devise computational shortcuts for the training of meta-learning
parameters. Use of meta-learning techniques, in combination with different methods, especially
for very large neural networks, can help in optimization depending on the specific application.

Systematic collection of data from previous ML applications can be applied to reduce learning
costs, including energy cost. Effective methods of applying past ML training experience to new
applications are just beginning to be explored in this extremely active area of research.

2.4.2.4 Continual Learning (Sequential Training without Catastrophic Forgetting)

Many approaches to continual learning rely on the stochastic gradient descent training method
and must adopt strategies such as memory buffers or replay to avoid catastrophic forgetting—
the tendency of a neural network to abruptly forget previously learned information as a result of
new incoming information. Madireddy, Yanguas-Gil, and Balaprakash (2023) developed a
biologically inspired ML architecture that incorporates synaptic plasticity mechanisms and
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neuromodulation to enable continual learning without stochastic gradient descent. This memory-
free architecture achieves continual learning performance superior to that of other memory-
constrained learning approaches and matches the performance of memory-intensive replay-
based approaches. The high accuracies achieved rely in part on a novel inelastic rule that
implements a simple form of memory consolidation for synaptic weights that deviate from the
presynaptic weights of each neuron, leading to a stabilization of weights that mitigates
catastrophic forgetting.

Harun et al. (2023) performed a comparative assessment of the efficiency of multiple continual
learning systems and found that, despite recent methods that have largely solved the
catastrophic forgetting problem, many of the methods for incremental learning are highly
inefficient in terms of computation, memory, and storage, with some methods requiring more
computation than training from scratch does. Ideally, a model should adapt to a growing training
dataset without increasing the computation or memory, but most continual learning methods
lack this ability.

Biological organisms are able to learn throughout their lifetimes from interactions with their
environment. It is desirable for neural network machines to be able to similarly learn on a
continual basis, without expending disproportionate amounts of energy. This challenge is known
as lifelong learning and largely remains unsolved. Kudithipudi et al. (2022) identified a set of key
capabilities that artificial systems will need to achieve lifelong learning and described biological
mechanisms that help explain how organisms solve these challenges. Examples include
transfer of knowledge for application in new circumstances; exploitation of task similarity by
decomposing tasks into more elementary, reusable components; noise tolerance; and
hierarchical distributed neural networks for specialized functions that enable both fast response
and reduced complexity of higher-level brain functions.

Progress in bio-inspired continual learning has the potential to play a critical role in reducing the
energy cost of ML training by focusing on energy-efficiency in both the formalisms of learning
and in the implementations of training methods.

2.4.2.5 Physics-Informed ML Models for Scientific Computing

Machine learning is increasingly being used to solve problems in applied mathematics,
engineering, and physics, using equations that model the problem to guide the training of the
neural network. Physics-informed neural networks (PINNs) are neural networks that incorporate
physics in appropriate model equations, such as partial differential equations, as a component
of the neural network itself (Cuomo et al. 2022). The framework for such models was first
introduced by Raissi et al. (2017), although there were many prior examples of related work
before the formulation of a formalized framework. Figure 47 shows a generalized flow diagram
of such a neural network model.

Such ML applications are a promising research direction in scientific computing in general,
offering the potential to displace or enhance other computationally intensive engineering
calculations, such as finite element solvers, for substantial energy savings. PINN are an active
area of research, with many examples in power systems (Huang and Wang 2023; Misyris,
Venzke, and Chatzivasileiadis 2020), fluid dynamics, quantum mechanics, materials science,
optics, electromagnetics, and other fields (Cuomo et al. 2022).
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There are still many unresolved challenges, such as convergence and stability, as well as
implementation issues with software architectural design, including boundary conditions
management, neural network hyperparameter selection, and optimization strategies. As is the
case with other fields of ML research, the choice of the best type of neural network (feed-
forward, deep learning, convolutional, recurrent, or others) is not well-understood. Integration of
PINN into scientific analysis code written in conventional programming languages such as C++
and Python is also a challenge.

Physics Informed Network

Residual errors:

Labeled data: L, (6)]

3 Boundary/initial conditions: Lz (8)]

S Partial differential equations: Lz ()]

0 Numerical
Derivatives Feedback mechanism:
L(g) = WFLF(g) aF WBLB (8) aF WDLD(S)

6" = argminL(0)
]

Figure 47. Physics-informed neural network differential equation solver. The network is defined by 6. Its input
variables are transformed into network output field u. Derivatives are calculated from the given equation(s) and u, and
the residuals are used as feedback to train the network. Source: Cuomo et al. 2022.

2.4.2.6 Bottom-up Sparse ML Model Development

One strategy to enable large models with high performance but better scaling is to use sparse
connectivity. This approach routes individual inputs to different “experts” in a potentially huge
network instead of passing every input to every part of the neural network. This is known as a
“mixture of experts” model. For example, a mixed image and text recognition/classification
model could have separate specialized expert sub-models for image and text analysis (Mustafa
et al. 2022).

The mixture of expert model approach mainly benefits performance during inference, not
training. As mentioned earlier, although training takes more computational energy, inference is
typically used hundreds or thousands of times for each training instance and thus accounts for
most energy use. Recently, Huang et al. (2023) proposed a method for a dimensional reduction
technique that can be applied during the training phase and can generally be applied to any
network architecture. The authors showed that the reduced version of the neural network
maintains high accuracy but takes much less energy, model storage, and computational time in
both training and inference for a specific application. This approach thus presents a promising
direction for further research.
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2.4.2.7 Benchmarking Hyperparameter Optimization Methods

The number of choices in and increasing size of ML designs makes research on effective
methods for hyperparameter optimization (HPO) essential. However, the research community
lacks realistic, diverse, computationally cheap, and standardized benchmarks that can be used
to compare optimization approaches. Eggensperger et al. (2022) has proposed a set of
containerized, multi-fidelity benchmarks, allowing them to be reproducibly run for
computationally affordable and statistically sound evaluations. The suite of benchmarks is called
HPOBench and was tested in a large-scale study evaluating 13 optimizers from 6 optimization
tools. This kind of benchmarking capability will not only shed light on the most effective
optimization strategies but can also provide the dataset for a meta-learning approach to highly
efficient hyperparameter optimization.

2.4.2.8 Benchmarking and Methodology to Quantify Training and Inference Costs

ML training presents three key benchmarking challenges. First, multiple implementation factors
(such as processor architecture, memory architecture, and network size) simultaneously affect
both training throughput (speed) and the training time to reach a specified quality threshold.
Second, the stochastic nature of training causes run-to-run variation in time to solution. And
third, the diversity of software and hardware systems makes fair benchmarking difficult. MLPerf,
as noted in Section 2.4.1.2, aims to address these challenges. MLCommons has developed the
MLPerf benchmark suite to measure how fast systems can train models to a target quality
metric (Mattson et al. 2020). An MLCommons Power Working Group has also been established
to create power measurement techniques built on industry-standard tools in support of MLPerf
benchmarks. Future work should benchmark a more comprehensive set of accelerator
configurations and include benchmarks for inference on both servers and edge devices.

Action plan for reduced energy for ML algorithms

Table 57. Action Plan for Reduced Energy for ML Algorithms.

Technical Challenge for | Reduce the energy cost of software (both training and inference) for machine learning

Energy Efficiency applications.
e All types of machine learning algorithms
. . | ® All hardware architectures
Technologies of Interest: L )
e Training set data quality
e Incremental/progressive training

Challenges Solution Pathways
Data/dimensional reduction and specificity e Develop large-scale benchmarks and methodology to quantify
Network architecture and optimization training and inference costs

Demonstrate energy-efficient alternative training methods

Develop approximate matrix/tensor multiplication methods

Achieve continual learning without catastrophic forgetting

Optimize physics and data requirements for scientific machine

learning

e Develop sparse models bottom-up, avoiding the need to build
and prune large models

e Develop hyperparameter optimization methods for large
language models and meta-learning methods for predicting
optimal values

e Improve meta-learning of hyperparameter optimization for

training large models

Hyperparameter optimization
Numerical operations
Adaptation of nature-inspired learning in ML methods
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Major Tasks /
Milestones

Meta-learning of

Metrics

Iterations required to reach
optimal hyperparameters for

Targets

Timeline (years)

matrix/tensor multiplication

Stakeholder

accuracy maintained

Role

hyperparameter training, energy savings from Few shot (5 data points) to one shot 1-3
optimization for training L = optimization (1 data point)
large models optimized training for a target
performance
Contlnugl Iear.nl.ng. achieve | Accuracy on all tasks . 95% relative accuracy without having to
sequential training on compared to that obtained retrain on prior data, 95% energy savings 5
multiple tasks without from full retraining, total . C U
) . - with respect to a specialist model
catastrophic forgetting energy cost for training
Establish trade-off between o . . £ ano
physics and data %data/dimension reduction 92 % .redlf el i st s iz €207 )
requirement for SciML physics known
Develop sparse models % reduction in parameters of
bottom-up, i.e., avoiding language/vision/time series 95% of state-of-the-art accuracy with 90% 5
the need to build and prune models reduction in size
large models
Develop benchmark
hyperparameter
Ioptimilzation metho(c’islfor d Num?}er of iteratiolns required Identify optimal hyperparameter for a new s
arge language models an to achieve optima . ? ’
develop meta-learning hyperparameters irigelel el 0D Dzt o
methods for predicting
optimal values
Develop large scale . One dataset/architecture per main use
benchmark and Energy cost per training h . L
methodology to quantify experiment case as dgfmed by its footprint in energy 1-3
T consumption
training costs
Demonstrate energy-
efficient alternative training
?;;ng?rfgor:’ygpr;?;sr:?n Egpeer%ﬁ:aﬁt FIPLELUY 90% reduction in training costs 3-5
methods, neuromorphic
computing architectures)
Approximate/efficient Energy cost per flop 50% reduction in energy with 90% 5

Stakeholders and Potential Roles in Project

Software Developers

Develop and implement improved algorithms

Academia

Develop and implement improved algorithms

National Laboratories

Develop and implement improved algorithms and benchmarks

Government

Provide targeted funding programs for high impact areas

Required Resources

Cross Collaboration with Other Working Groups

Circuits and Architectures: Breakthroughs in this area will
require a combination of algorithms and hardware accelerators,

co-designed to work together for maximum efficiency.

2.4.3 Reduced Energy for Algorithms Used in Scientific Computing

The U.S. Department of Energy (DOE) and its affiliated laboratories are at the forefront of
employing scientific computing to tackle a wide range of challenges in biology, chemistry,
physics, and materials science. These computations require significant processing power, so it
should come as no surprise that as of 2023, DOE laboratories operate three of the world’s top

ten supercomputers. A comprehensive analysis of 500 supercomputers, as reported by the

TOPS500 list, which ranks the most powerful computer systems worldwide, highlights the
intensive energy demands of these systems (TOP500 2022; Barrett et al. 2010). The Top500

analysis, detailed in various studies, spans systems from 2010 to 2022 and includes the first

reported exascale computer (Shankar and Reuther 2022).
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In these high-performance computing systems, energy is consumed by two main sources: the
hardware/system-level architecture and the algorithms/software, which are inherently
interdependent. Accurate energy assessments thus require benchmarks that consider both the
raw performance metrics and the actual time needed to complete scientific simulations,
emphasizing the critical co-dependency of hardware and software in achieving energy efficient
scientific computing.

Energy benchmark analysis

Energy benchmark analysis is vital for scientific computing because it directly impacts the
efficiency and sustainability of supercomputers engaged in complex simulations. An analysis by
Shankar and Reuther (2022) evaluates the performance of the world's most powerful computing
systems, as ranked by the TOP500 list, focusing on the High-Performance Linpack (HPL) and
High-Performance Conjugate Gradient (HPCG) benchmarks.

The HPL benchmark assesses a supercomputer’s ability to solve a dense linear system of
equations using double or higher precision arithmetic (FP64). It employs LU decomposition,
where a matrix is factored into a lower and an upper triangular matrix, followed by back
substitution to find the solution. This process, crucial for high-performance computing systems,
largely consists of complex matrix multiplications that benefit from parallel processing
capabilities of modern CPUs, GPUs, and memory subsystems. Rmax and Rpeak denote the
actual maximum and theoretical peak performances of these systems, respectively, reported in
teraFLOPS or petaFLOPS.

The HPCG benchmark, in contrast, evaluates the efficiency of data access and computations in
a conjugate gradient solver, which is foundational for simulating physical systems. It tackles a
structured sparse linear system of equations using stencils, a method that relies on FP64 for its
accuracy and stability. Due to its focus on sparse data patterns, HPCG typically shows lower
performance rates compared to HPL, emphasizing the necessity for both benchmarks to ensure
comprehensive evaluation and numerical stability of supercomputing systems (Heroux and
Dongarra 2013).

Because not all systems are evaluated using the HPL and HPCG benchmarks, the importance
of relevant benchmarks is underscored by Figure 48, which graphs Rmax for the top 500
systems. For instance, the Frontier system, recognized as the most energy-efficient on HPL
benchmark among the TOPS500, is over 200 times less energy-intensive than the LLNL CTS-1
Quartz, another system operated by the DOE. This stark contrast in energy efficiency, based on
analysis from 2022, highlights the need for more comprehensive benchmarks to better
understand energy disparities and identify strategies to enhance energy efficiency across all
high-performance computing systems.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 192



Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

1e-08
LLNL CTS-1 Quartz
LLNL/NNSA CTS-1 Jade ®
Topaz. Tiinhe—1A .
L4 J
> Thunder SwiftLucy
o— 1e-09; Pleiades Pangea
o QO Shaheen II.S;perMUC Phase 2 -occigen2-Excalibur Mak 2. ‘e Astrag o ISystem
GC) O Trinit e HPC2 cascade akmars TToystem  ® ngometheus
L = oy é\be'r. ® o e Mthir ®»  Puhtie Endeavor
o ° & Mistral 0 . 0 . o "We® o0, oy
= Tianhe-2A °® ee® * o o oo o Gre%ne o % &
(>é 8 o %fesh o & * of -l '. :. Ga.a Tryton Plus
. ) . o . o
) Piz Daint HPC4® Atlas JFnix MeluXina — Cluster Module ¢ 4 J.GV1.00Syste.m ®
o~ 1e-10; PRk is ° . Bluga Szaisystem
.o.’ . Artemis  Cedar (GPU) AIph.aCentauri AB4FX prototype 4
[ ]
Selene AiMOS.” ., LK viDia DGX SupSPBTA! Scalable Module |
¢ e ° Athena Spartan2 e o Jetys o NA-J2 '
Adastra ° ° Wilkes-3 Phoenix — 2022Snellius Phase 1 GPU
Luml J ATOS THX.A.B MN-3
Frontier e
I Frontier TDS
1e-11;

Rank

Figure 48: Energy/Instruction based on HPL benchmarks Rmax. The X-axis consists of the top 500
supercomputers with the fastest on the left and slowest on the right. Source: Shankar and Reuther 2022.

To illustrate the energy requirements for large-scale scientific computations, we consider the
simulation of a SARS-CoV-2 spike protein, a crucial component of the coronavirus's infection
mechanism. Conducted on a supercomputer, this simulation analyzed the dynamics of the viral
envelope consisting of 305 million atoms. The simulation ran for 8.77 days on 80 P100 GPUs at
the San Diego Supercomputer Center, achieving a sampling duration of approximately 7.5
microseconds. Parameters from this study are detailed in Table 58. Assuming energy costs for
floating-point operations range between 1 x 10-12 to 1 x 10-11 joules, the total energy
expended for this simulation was approximately 24.9 billion joules, as outlined in Table 59
(Casalino et al., 2021). This case exemplifies the significant energy demands of advanced
scientific simulations.

Table 58: Simulation parameters for Covid Virion particle simulations.

Source: Shankar 2023

NAMD Simulation Atoms \ Nodes Sim rate Performance \
Spike-ACE2 complex 8.5M 1024 162 ns/day | 229 TFLOP/s
. 3.06
SARS-CoV-2 virion 305M 4096 68 ns/day PFLOP/s

Table 59: Energy estimate in Joules and kWh for simulation of a single virion particle.

Source: Shankar 2023

Application Energy (joules) | Energy (kWh) |
Spike ACE Complex 1.74E+09 4.82E+02
SARS Covid Virion 2.32E+10 6.44E+03
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| Total (Max) | 2.49E+10 | 6.92E+03 |
The energy consumed during the entire simulation of the SARS-CoV-2 spike protein
significantly surpasses that used by a large language model application, despite the shorter
simulation duration. This vast difference, spanning over twenty orders of magnitude greater than
the energy for a single floating-point operation, is attributable to the immense power
requirements and extensive compute cycles demanded by high-performance supercomputers
for scientific computations. This scenario underscores the inherent energy intensity of high-
precision scientific computing, necessitated by the stringent accuracy requirements of such
simulations. This pattern is likely representative of a broad spectrum of large-scale scientific
computations, highlighting the critical need for comprehensive system benchmarking. The
analysis makes it clear that ongoing efforts to advance and optimize software across different
systems and applications are essential to achieve energy efficiency in scientific computing.

2.4.4 Reduced Energy for Cryptocurrency Mining

Electricity demand from U.S. cryptocurrency mining operations has surged dramatically in
recent years. Current estimates suggest that annual electricity consumption from cryptocurrency
mining accounts for between 0.6% and 2.3% of the nation's total electricity use (EIA 2023).
According to The New York Times, 34 large-scale Bitcoin mining operations now function in the
United States, further straining local power grids (Dance et al 2023). As shown in Figure 49, the
energy usage for computer-based cryptocurrency mining, including data centers and Al
applications, is becoming a significant share of the electricity used in computing.

Figure 49 presents a comparison of energy estimates (electrical energy associated with
computing) from 2016 to 2024 against the annual electricity production of various states (such
as Arizona, California), countries (like Australia, the Netherlands), and the annual energy
generation of the Hoover Dam hydroelectric project. Additionally, the figure includes lower
bounds and estimated energy requirements for cryptocurrency mining (EIA 2024).
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Figure 49. Energy use estimates of cryptocurrency mining. Energy is compared to the electricity generated in the
states of California and Arizona; in Australia, the Netherlands, and the United Kingdom; and by the Hoover Dam
project. Source: EIA 2024

After dipping briefly in 2021, the energy consumption from cryptocurrency mining has seen
continued growth since 2023. The cost relative to transaction volume has not changed
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significantly since 2010, but the overall energy usage has grown into a significant component of
computing (Song and Aste 2020). Current estimates suggest around 170 TWh is consumed,
roughly ten times the total output of the Hoover Dam and exceeding the annual electricity
production of Arizona and the Netherlands. At its peak between 2021 and 2023, cryptocurrency
mining consumed more electricity than the entire state of California did. The U.S. Energy
Information Administration estimates that about 38% of global cryptocurrency mining is done in
the United States, using approximately 3.5 times the annual electricity output of the Hoover
Dam. This energy consumption now rivals the 200 TWh used annually by the world’s
conventional data centers and constitutes a significant fraction of the 460 TWh consumed by all
data centers combined (International Energy Agency 2017).

Strategic responses for the United States

The substantial electricity demand from cryptocurrency mining has prompted specific actions
from policymakers and grid planners to mitigate adverse effects on electricity cost, reliability,
and related emissions (The White House 2022; de Vries 2018). Challenges in tracking the
energy use of cryptocurrency mining arise from the difficulty in partitioning energy use from
system-level components to architecture and software. With the trillion-dollar market
capitalization associated with cryptocurrency mining, it is expected that both hobbyists and
commercial miners will continue engaging in this resource-intensive activity (Thompsett 2024).

Understanding the extent of cryptocurrency mining’s profound impact on the U.S. energy
landscape is difficult, particularly regarding the consumption of significant computing power and
associated energy and material resources. To address potential instability in the electrical grid
due to the intense electricity demands of cryptocurrency mining, the U.S. government has
issued a report pursuant to Executive Order 14067, Ensuring Responsible Development of
Digital Assets, raising four critical inquiries (Thompsett 2024):

1. How do digital assets affect energy usage, including grid management and reliability,
energy efficiency incentives and standards, and sources of energy supply?

2. What is the scale of climate, energy, and environmental impacts of digital assets relative
to other energy uses, and what innovations and policies are necessary for robust
comparisons?

3. What are the potential uses of blockchain technology that could support climate
monitoring or mitigation technologies?

4. What key policy decisions, critical innovations, research and development, and
assessment tools are required to minimize or mitigate the climate, energy, and
environmental implications of digital assets?

Optimization of cryptocurrency mining operations

The cryptocurrency mining process, inherently compute-intensive, necessitates an ever-
increasing amount of computational power (The White House 2022). Mining operations are
performed by networks that execute a one-way hashing function to map digital inputs into fixed-
length output digits, essential for validating transactions within a blockchain. Each validation
involves solving mathematical puzzles that incorporate transaction data, where the miners
generate a vast number of guesses—from millions to trillions—per second to identify unique,
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alphanumeric hashes. Once a block of transaction data is verified as correct, it is added to the
blockchain, and the successful miner is rewarded with newly minted cryptocurrency.

Mining operations are typically conducted in farms, which consist of numerous video cards and
ASIC modules connected to computers, collectively enhancing the network's hash rate and its
ability to process and verify transactions swiftly (Kim 2021; Bondarev 2020). However, the
continuous operation of these energy-intensive farms poses significant challenges to power
infrastructure, particularly in countries like the United States where a substantial number of
mining centers are located. This sustained high energy demand highlights the urgent need for
research into optimized consensus algorithms and system efficiencies (Lei et al 2021).

In a notable advancement, Ethereum drastically reduced its energy consumption by over 99% in
2022 by transitioning its algorithm to a Proof of Stake (PoS) consensus mechanism. This
change aligns the potential of algorithmic and software innovations in reducing the energy
footprint of blockchain technologies (The White House 2022). Further research in this area
could lead to more sustainable practices across the industry, alleviating stress on global energy
resources.

2.4.5 Software for Conventional Architectures

The technologies described in this section refer to software “for conventional architectures,” with
emphasis on CPUs and GPUs, but applicable to emerging architectures as well. Some general
themes that emerged from working group discussions include the following:

e Tooling as discussed in section 2.4.1 is needed to find new ways to optimize (i.e.,
incrementally improve) high-use software.

o More efficient languages, compilers, and libraries (e.g., math kernels) will allow for more
efficient programming by leveraging a given microarchitecture’s capabilities.

¢ Some common software functions such as encryption, error correction, and communications
offer opportunities for energy-saving optimizations. These are necessary functions in
computer systems that can be viewed as a sort of “tax” that must be paid for systems to
work.

¢ Newer hardware needs updated compilers and libraries to allow it to be used in old
problems (e.g., NVIDIA Rapids, AMD ROCm). This need exists for incrementally improving
performance in conventional hardware, as well as for emerging architectures/devices.
Emerging hardware or software architectures need to be integrated into existing processes
and show they can solve existing problems, and that the benefits of new architectures justify
the overheads of integrating them.

2.4.5.1 Languages, Compilers, and Runtime Systems

The proliferation of multi-core processors has spurred a need for software that can harness the
full potential of these systems. However, parallelization (restructuring code to enable portions to
run simultaneously on multiple processors) is an advanced topic in computer science education
and code optimization via explicit parallelization in source code is labor intensive and potentially
error prone. Profiling tools (discussed in section 2.4.1), when adapted to provide accurate and
detailed energy reporting, can help skilled programmers to more easily and quickly identify
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opportunities for optimization across complex computing environments, thus facilitating
optimization with less investment in programmer labor.

It is often possible to achieve significant
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supercomputers in the 1980s and 1990s), can contribute to co-optimization between hardware-
software components that uses the machines to reduce computational effort.

A more recent well-known example, shown in Figure 50, comes from Hennessy and Patterson’s
(2019) Turing Award paper. A matrix multiply operation written in interpreted Python was sped
up by almost 63,000x by reimplementing the code in C, writing it explicitly to operate in parallel,
optimizing cache memory access, and exploiting vector multiplication hardware.

Faster programs typically use less energy. A recent study (Pereira et al. 2021) compared the
performance of many programming languages on a common Linux-based desktop platform.
This comparison was part of a project called the Computer Language Benchmarks Game, in
which benchmark programs are collected in as many programming languages as possible and
are run in a common system operational setup. Figure 51 illustrates the results for one of the
benchmarks. (Results for other benchmarks were similar but not identical.) Energy consumed
was measured using The Intel Running Average Power Limit (RAPL) tool measured the
programs’ energy consumption. The negative correlation between speed and energy consumed
was strong across all languages.

Although a skilled programmer can make maijor efficiency gains in some cases by explicit
handling of optimization, it is more scalable if the compilers perform optimization automatically.
Foundational software components that run continuously justify the expenditure of considerable
effort at manual optimization. However, most software development is conducted either in
situations where such time investment is not feasible, or by personnel who lack the training (for
example, when scientific research code is written by research scientists, not computer
scientists).

The Python optimization results shown in Figure 50 may be an extreme example, but it
underscores the widespread inefficiency of software due to both language choice and
programming practices. Python is an interpreted rather than compiled language, trading
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execution efficiency for ease of coding. The prevalence of Python continues to grow (Cass and
Goldstein 2023), thanks both to the availability of a rich ecosystem of libraries and packages for
every variety of programming problem and to the ease of learning and experimenting afforded
by the interpreted language. Although the Python interpreter imposes an inefficiency in program
execution, much of the widely used Python code infrastructure (e.g., NVIDIA Rapids and CUDA)
is built on fast, compiled, optimized libraries implemented in C/C++ with convenient Python
language wrappers for ease of use.

10,000
s Fnergy(J) Memory (MB) T IMe(ms)
(c): compiled 300,000
(v): virtual machine
(i): interpreted
@ 1,000
=
Py
5 30,000 &
5 E
2_ [}
> =
==
o
& 100
3,000
10 300
O+ B EBTEC QP EHBTo 2T EEEL 220 Oz
SO¢ElgSSEEzsasspdpEC3Fagda
TSR E0sEZr=""a0Ur=58=>2==a==
T 2 = €gezs 85 77 =

Figure 51. Comparison of the energy, speed, and memory used for various programming languages.Results
are for the binary-trees benchmark. Source: Pereira et al. 2021.

Some more recently introduced languages such as Julia and Mojo aim to be comparable to
Python in terms of user friendliness but in a higher-performance compiled implementation. Julia
is a high-level, general-purpose programming language, increasingly being used for numerical
analysis and scientific computational problems (Fischer 2022). Testing Julia with codes
indicates improved energy efficiency compared to other high-level languages like Python for
specific applications (Pereira et al. 2021). Mojo is particularly notable because it aims to be
code-compatible with Python 3.x, supporting both ahead-of-time and just-in-time compilation as
well as full compatibility with the popular Jupyter notebook style of Python programming. Mojo is
still under development and not yet capable of full compatibility. Further maturation of Julia,
Mojo, and similar language initiatives will yield large practical benefits in program speed and
energy efficiency.

All major commercial and open-source compiler systems (e.g., gcc, Visual Studio, LLVM) now
have built-in optional optimizers for auto-parallelization of code to run efficiently on multiple
cores, as well as auto-vectorization of code (automatic execution of an arithmetic operation on
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multiple elements of an array simultaneously) to use single-instruction-multiple-data (SIMD)
vector instructions. Code “optimization” generally cannot be provably optimal; rather, code
optimizations exploited by compilers make use of heuristic rules that are painstakingly
discovered through intuition and experimentation by compiler writers.

Of particular importance in mitigating the memory performance bottleneck is the need for cache
management optimizations. Although the software has no direct control over the cache (which is
managed completely by the hardware), software optimization must take into account the
processor’'s cache operations in order to maximize the speed and minimize the energy cost
associated with data movement. The Python matrix multiplication example in Figure 50
underlines the importance of cache management optimization: while parallelization provided a
speedup factor of 7.8x, cache optimization provided a boost of 18.4x.

Challenges and solution pathways for languages, compilers, and runtime systems

Compiler optimizers are constantly improving through normal software management practices.
Further opportunities for improvement in compiler optimization include auto-parallelizing and
auto-vectorizing optimizations. Machine learning techniques may be able to improve compiler
optimization to improve the speed and thus energy efficiency of executable code. Wang and
O’Boyle (2018) provided a comprehensive review of research in applying machine learning in
compilers and runtime systems, summarized in Table 60. Some studies have reported success
in applying machine learning to discover improved optimization heuristics or fine-tune known
heuristics. Others have used machine learning to optimize use of the myriad compiler
optimization flags of popular compilers, such as gcc, to achieve the highest speedup factor.

Table 60. Machine Learning Methods in Compiler and Runtime Design.Source: Wang and O’Boyle 2018.

Approach Problem Application Domains Models

Supervised Regression Useful for modeling continuous values, Linear/non-linear regression,

learning such as estimating execution time, artificial neural networks (ANNs),
speedup, power consumption, latency, etc. | support vector machines (SVMs)

Supervised Classification | Useful for predicting discrete values, such K-nearest neighbor (KNN),

learning as choosing compiler flags, #threads, loop decision trees, random forests,
unroll factors, algorithmic implementations, | logical regression, SVM, Kernel
etc. Canonical Correlation Analysis,

Bayesian

Unsupervised Clustering Data analysis, such as grouping profiling K-means, Fast Newman

learning traces into clusters of similar behavior clustering

Unsupervised Feature Feature dimension reduction, finding useful | Principal component analysis

learning engineering feature representations (PCA), autoencoders

Online learning | Search and Useful for exploring a large optimization Genetic algorithm (GA), genetic

self-learning space, runtime adaption, dynamic task programming (GP),

scheduling where the optimal outcome is reinforcement learning (RL)
achieved through a series of actions

Because the effective use of parallel computing resources depends on the workload at runtime,
which may not be accurately estimated at compile-time, schemes to efficiently manage runtime
resource allocation are an important element of overall performance optimization.
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Another important and promising direction for optimization is the direct generation of source
code by machine learning systems. Al assistants for human code-writing are currently
experiencing a rapid and widespread uptake in the software developer community. GitHub has
introduced an Al tool called GitHub Copilot (GitHub 2024) that provides sophisticated interactive
code completion capabilities as well as code generation from textual prompts. As of this writing
more than 37,000 businesses have begun using GitHub Copilot in their code development.
Other Al-based code generation tools such as ChatGPT are also available.

A recent survey of ML-based code generation approaches (Dehaerne et al. 2022) compared 37
studies from 2016—2022 describing ML-based source code generation: generating original code
from a textual description of requirements, generating documentation from code, or translating
code between languages. The authors noted that although ML models can generate code, it is
often not as optimized or effective as human-written code is. A study comparing human-written
to Al-assisted C++ code showed that the human-written code was 15-26% faster on average,
and that the difference was greater for more expert programmers, up to 6x faster in some cases
(Erhabor et al. 2023).

However, future work promises to address these challenges. Automated source-level rewriting
of human-written code for optimization without the use of machine learning has demonstrated
some successes. Baziotis, Kang, and Mendes (2023) demonstrated a system called Dias to
automatically rewrite code in exploratory Jupyter data analysis notebooks. Dias was able to
rewrite individual Jupyter cells to be 57x faster compared to hand-written code calling the
Python Pandas library and 1,909x faster compared to the same code calling the Modin library (a
drop-in replacement for Pandas that supports parallel processing). Whole Jupyter notebooks
were accelerated by up to 3.6x when using the Pandas library and 26.4x using the Modin
library. Application of such automated source-level optimization to Al-generated source code is
a logical next step. This is an extremely active area of research. Given the boost in programmer
productivity afforded by such tools, Al-generated or Al-assisted code development may be used
to optimize algorithms for energy efficiency, depending on other system-level constraints.

2.4.5.2 Privacy and Security

Security, at the intersection of software and architecture, is computationally expensive. Of
relevance to EES2, from a high-level confidential computing perspective, security is an
overhead cost as we seek to improve the overall energy efficiency of computing. Privacy and
security solutions must meet needs as efficiently as possible. Current solutions, which put
encryption into datapaths to enable a trusted execution environment, have support from AMD,
Intel, and NVIDIA. Currently, encrypted computing has limitations related to the management
and security of encryption keys and the necessity of multiple encryption/decryption steps for
data processing.

To enable privacy and security as a built-in feature of data flow, the internet of the future needs
a secure multi-party compute infrastructure that uses homomorphic encryption and private
information retrieval (PIR). Homomorphic encryption allows computations to be performed
directly on encrypted data—such that computation results are also encrypted, and when they
are decrypted, are identical to the results of those computations on the unencrypted data.
Homomorphic encryption, therefore, can be used for cloud storage and computation that allows
data to be processed in the cloud while remaining encrypted and private (Munjal and Bhatia
2022).
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PIR has been a popular research topic since it was first described in 1995 (Hsu et al. 2020).
With PIR, when a user makes a query to retrieve information, the request is sent to the service
provider using homomorphic encryption. The encrypted response can only be decrypted by the
user. There are crypto technologies that can return a desired item without having knowledge of
the request content, but the algorithms are extremely computation-intensive (10x to 1,000,000x
compared to unencrypted). Nevertheless, because of the demand for privacy, PIR will likely be
deployed in at least some internet transactions in the future and will result in a large
computational workload for those transactions.

Challenges and solution pathways for privacy and security

There are many trade-offs between computational cost and security/privacy guarantee in
implementing homomorphic encryption and PIR with different algorithms. For example, PIR can
be implemented in a single server using a distributed point function or in two servers using two-
level homomorphic encryption, and the two alternatives will have different costs.

In the design space for homomorphic encryption, there are even more trade-offs, for example,
supporting additive homomorphic encryption, using integer or floating-point algorithms, and
other design possibilities. The myriad options available must be evaluated to determine practical
solutions for different applications. Accompanying these design trade-offs are differences in
energy consumption.

A high degree of parallelism in the computations is needed to make PIR practical. Currently,
implementations of PIR use conventional hardware (e.g., CPUs, GPUs). Ultimately, for both
speed and energy efficiency, domain-specific architectures should be developed, and the
hardware and software should be co-designed. As of 2024, at least six companies are testing or
commercializing the first chips implementing homomorphic encryption (Moore 2024).

2.4.5.3 Computational Reliability

In general, increased reliability requires more energy, a kind of “tax” on the system.
Computational reliability encompasses a broad range of technologies and techniques in modern
computer systems. Algorithms and software used to increase reliability include various forms of
RAID, N-way replication, two-phase commit, and active-passive configurations. There are also
protocols for dealing with hardware failure due to age or external influences like radiation-
induced bit flip or array failure.

Computational reliability has been recognized as an important topic for decades. Well-
established industry groups study the issues and set standards and requirements for fault
management, such as the Open Compute Project (OCP) working groups on fleet-scale memory
fault management and silent data corruption errors.

Bit errors may be the result of electromagnetic interference but are most commonly induced by
cosmic rays. Error correction coded (ECC) memory is a type of DRAM used in data centers,
servers, and generally any application where high reliability is critical. (It is typically not used in
personal computers.) ECC memory uses additional non-data “parity” bits to encode the data bits
in a Hamming code (Hamming 1950) or a triple modular redundancy code (Shooman 2002) in a
way that permits detection of errors and reconstruction of the correct data if an error occurs.
ECC memory may be implemented using an extra DRAM on a memory module containing the
parity bits, or with the parity checking on-chip. “Chipkill,” an IBM-specific technology, is a more
effective version of ECC that also corrects for multiple bit errors, including the loss of an entire
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memory chip. This is accomplished by spreading the bits of a Hamming-coded word across
multiple chips, so that the word can be reconstructed even if an entire chip fails.

Error checking is also present in CPU cache memories, typically with a single bit error detection
capability in the L1 cache backed up by a single bit error correction encoding in the L2 cache. If
a 1-bit L1 cache error is detected, it can be refreshed from the L2 cache.

For very large systems subject to the combined error rate of all components (such as data
centers and supercomputers), or systems that run critical applications (such as financial
transaction processing), further protection from errors is achieved by checkpointing, in which the
system or application state is periodically backed up to non-volatile memory. In the event of an
uncorrectable upset, the system or application can restart from the most recent checkpoint
rather than starting over from the beginning or completely rebooting.

For non-volatile storage, redundant array of independent disks (RAID) technology is
conceptually similar to the triple modular redundancy or Chipkill technologies discussed above.
In this scheme, multiple drives contain multiple copies of the data or parity calculations from the
data, enabling full data recovery in the event of a failure of a drive sector or the whole drive.

Not every transistor in a computer can be protected from state errors. Silent data corruption—
when data errors go undetected by the larger system—is a widespread problem for large-scale
infrastructure systems. It can propagate through erroneous computations and manifest as
application-level problems. It can also result in data loss and can be difficult to debug and
resolve. Dixit et al. (2021) described best practices for detecting and remediating silent data
corruptions, finding that reducing silent data corruption requires not only hardware resiliency
and production detection mechanisms, but also robust fault-tolerant software architectures.

Challenges and solution pathways for computational reliability

Future improvements in computational reliability are likely to come from refinements in both the
degree of protection and the methods for handling failures. Some challenges and potential
solutions are as follows.

Application checkpointing

While ECC protection is implemented in hardware, application checkpointing (periodic saving of
the state of a computation to use as a restart point in case of a failure) is managed by software
and is an active area of development. Google recently reported developing a checkpointing
scheme used in very large-scale LLM training (a system with more than 50,000 TPUv5e chips
organized in UCle-interconnected pods, with 256 chips per pod) that boosts efficiency 150x by
loading checkpoints in a single pod and broadcasting the checkpoint to all other pods, rather
than have each pod separately load the checkpoint data. Industry is actively developing more
optimizations like this.

Single-event upsets and other sources of random error are stochastic processes, whereas
checkpointing algorithms are deterministic or nearly so. An energy cost can be ascribed to the
overhead necessary to implement checkpoints and a (stochastic) energy cost can be ascribed
to lost work in the event of an error. These two costs can be subjected to formal minimization
analysis that can be used to reduce overall energy cost.

Combining reliability and security
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For memory, there is a new Open Compute sub-workstream called Fleet-scale Memory Fault
Management, a spinoff of the Hardware Management workstream. There are possible options
under investigation by this industry group for co-design of both security and reliability features
(Aiken et al. 2021) for reduced overhead energy.

2.4.5.4 Communication Protocols

Software can increase energy efficiency by minimizing communication overhead, and in some
circumstances software can be used to enable efficient workload data flow. For example,
disaggregated resources (e.g., memory) could be used as a more convenient place to store
data which is processed incrementally (e.g., weights in a neural network), with the need only to
pass pointers instead of passing blocks of data across the interconnect.

Communication protocols such as the NVIDIA Collective Communication Library (NCCL) aim to
streamline common communication patterns for Al workloads (NVIDIA 2023b). NCCL
implements multi-GPU and multi-node communication primitives optimized to achieve high
bandwidth and low latency over PCle and NVLink high-speed interconnects (Jeaugey 2019).
Development frameworks such as PyTorch and TensorFlow have integrated NCCL to
accelerate deep learning training on multi-GPU systems.

Microsoft has implemented its own Azure-based platform on top of NCCL known as Microsoft
Collective Communication Library (MSCCL), described as “an inter-accelerator communication
framework”. It provides programmable communication algorithms for inter-connection among
accelerators with different latencies and bandwidths

Challenges and solution pathways for communication protocols

The driving challenge for communication protocols are in estimating quantitatively the trade-offs
between speed (performance) and reliability. Standardization and widespread adoption will
benefit future system development. The EES2 community can play a role in this effort by
ensuring that energy efficiency is a consideration in such standardization efforts.

Action plan for software for conventional architectures
Table 61. Action Plan for Software for Conventional Architectures.

Technical Challenge for Energy

- Software for Conventional Architectures
Efficiency

. Programming systems, including compilers, languages, runtime libraries
. Privacy and security

. Communication protocols

. Computational reliability

Technologies of Interest

Challenges Solution Pathways
. Improvement in compiled code performance without specialized . Use machine learning in source code and compiled
effort by programmers code optimization
. Reduction of energy cost associated with application . Develop stochastic optimization of checkpointing for
checkpointing energy efficiency
. Energy-efficient implementation of privacy protocols . Consider energy efficiency trade-offs in PIR

implementation
. Use co-design methods to design for efficiency
Major Tasks / Milestones Metrics Targets Timeline

Compilers anq _runtlmes. Level of detail and usability of 20% reduction in coding time to implement
Improved profiling tools for : TR 2-3 years
A automated code analysis optimization
optimization
Languages and compilers: Al Coding time; accuracy and 20% improvement in speed of generated
) h - . . 4-5 years
code generation wizards efficiency of coded algorithms; code
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suitability for IR code
optimization by compilers
Compilers and runtime libraries: - - o ;
ML approaches to discovering I;n;;::c\i/il;negrt‘ ér:aetézc:g(;): 10% improvement ;:1(1 :peed of generated 2-3 years
compiler heuristics p 9
Computational reliability: Overall energy cost of
checkpointing energy 9y 15% improvement 4-5 years
A . checkpointing
optimization studies
(ColriTLATEE o) [AEHEs o Adoption rate for new design
Promote standardization of P roiects 9 >90% 2-3 years
NCCL communication framework prol
Privacy and Security: Perform Enerav efficiency or ener
energy efficiency trade-offs for c?;t er traniaction 9y TBD 5-7 years
candidate PIR implementations P
Stakeholders and Potential Roles in Project
Stakeholder Role
Compiler Developers Implement optimization improvements
Hardware Suppliers Provide improved profiling tools
Data Center Operators Support modeling and simulation
Academia Demonstrate prototype software; support modeling and simulation

Demonstrate prototype software; support modeling and simulation; demonstrate improved

National Laboratories checkpoint in HPC centers

Government Provide targeted funding opportunities to stimulate work
Required Resources Cross-Collaboration with Other Working Groups
e Research funding is needed for improved compiler systems. Education & Workforce Development: Promote funding for
e Human capital is needed for participation in standards bodies and | studies at universities; catalyze improved energy efficiency
working groups, bringing an energy efficiency focus to their work. coursework.

2.4.6 Software for Domain-Specific and Emerging Architectures

This section is focused on software challenges and opportunities tied to computer architectures
outside of the traditional von Neumann architecture. For the purposes of this discussion,
“‘emerging architectures” refers to those that are not currently in commercial use. Some of the
software issues related to emerging architectures have already been discussed in Chapter 2.2.
Likewise, many of the solutions outlined in the previous section for “conventional” architectures,
such as compiler optimization, data compression, data type precision, and communication
protocols, can also be applied to domain-specific and other emerging architectures. This section
highlights some additional software related opportunities for energy efficiency gains in emerging
architectures.
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For decades, the imbalance of compute speed to memory bandwidth, as measured by the
number of computations the machine can perform in the time it takes to read a data value from
memory (see Figure 52), has made it ever more difficult to ignore communication costs. Beyond
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just increasing the size of hardware
caches, new algorithms must be
designed to minimize and hide
communication, sometimes at the
expense of duplicating memory and
computation (Dongarra et al. 2020).

Today, architecture and software go
hand-in-hand to implement new
capabilities in computer systems.
Hennessy and Patterson (2019)

o

have called this a new “golden age
of computer architecture” in which,
at the end of Moore’s Law, progress
will be made by exploring many new
architectural concepts beyond the
von Neumann architecture. Domain-
specific architectures (DSAs) serve as an illustrative example. By providing combinatorial rather
than sequential logic to perform the computation, and by orchestrating efficient data flow with a
priori knowledge of what the application demands, DSAs enable radically improved performance
in the targeted domains compared to what is achievable with a general-purpose CPU. To realize
this potential for improved performance, however, the support software system must be able to
provide high-level abstracted access to manage the unique aspects of the specific architecture
and design. DSAs can partially address machine imbalance by managing data movement more
efficiently, but more advanced research is needed.

2000 2005 2010 2015 2020

year

1975 1980 1985 1990 1995

Figure 52. Growing machine imbalance over time.Source:
Dongarra et al. 2020

The machine imbalance problem is exacerbated by the most significant trend in computing
today: the exponential increase of machine learning applications that, by their nature, are
extremely data intensive. Machine learning algorithms such as generative Al consume a large
amount of energy as a direct result of data movement (Sze et al. 2017). Compute In-Memory
(with some architecture changes) would be a good candidate to implement low power
inferencing for cloud as well as for edge devices, as this could reduce data movement. Cao et
al. (2023) and Gozalo-Brizuela and Garrido-Merchan (2023) provide a survey of generative Al
as well as use cases.

The following subsections describe some challenges for software developers for emerging
architectures and potential solutions for improved energy efficiency.

2.4.6.1 Domain-Specific Languages

Domain-specific languages (DSLs) are a natural fit to work with domain-specific architectures
(DSAs), although their application is by no means limited to new architectures. DSLs are
appropriate for application domains in which the most used operations can be expressed as
high level operators and are then amenable to intermediate representation techniques to target
and optimize for the specific hardware that is to be used. A familiar example of a DSL is
Structured Query Language (SQL), a language explicitly designed for manipulating relational
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databases. Domain-specific languages can make expression of hardware operations and
programmer intent more natural and straightforward. At the same time, DSLs can borrow
heavily from the syntactic and semantic idioms of popular general-purpose languages to reduce
the learning curve for programmers. Nevertheless, the learning curve for any new language can
limit its application to a wide variety of problems. The alternative to a DSL is a framework
(system of libraries and an associated runtime system) implemented in a general-purpose
language.

The trade-offs between these two alternatives, frameworks and DSLs, are illustrated by two
popular programming systems for machine language systems widely used today: PyTorch and
TensorFlow. PyTorch is an open-source machine learning framework based on the Torch library
with strong support for tensor computing and deep neural networks, both of which have
significant matrix-vector operations. The tensor (multi-dimensional array) computational
workflow can run on NVIDIA GPUs through the NVIDIA CUDA parallel processing compiler.
Originally developed by Meta (formerly Facebook), PyTorch is now managed by a non-profit
foundation as part of the Linux Foundation.

TensorFlow is also an open-source library (Abadi 2016) but is more properly viewed as a DSL
whose computations are expressed as “stateful dataflow graphs,” a data-centric intermediate
representation that enables separating program definition from its optimization (Ben-Nun et al.
2019). The TensorFlow language was developed concurrently with the Google tensor
processing unit (TPU) in a true example of hardware/software co-design.

Compiler infrastructure has evolved in response to the trend toward specialized DSLs targeting
DSAs. The LLVM compiler infrastructure mentioned in section 2.4.5.1 is a suite of libraries
enabling multiple language front ends to be represented in a common intermediate
representation for optimizations and then targeted to multiple machine-specific back ends. A
significant advancement is the introduction of multi-level intermediate representations (MLIR).
MLIR simplifies the process of mapping programmatic constructs from DSLs or frameworks
directly to DSAs (Lattner and Pienaar 2019). As depicted in Figure 53a, the compiler
architecture allows for the integration of multiple programming languages. Initially, source code
is processed into an abstract syntax tree (AST), followed by a language-specific intermediate
representation (IR) that supports unique features such as novel data types.

In the case of TensorFlow, the front end produces abstract data flow graphs which are
translated to the high level operations (HLO) intermediate language and optimized by the
accelerated linear algebra (XLA) optimizer. The outcome of these language-specific optimizers
is then lowered to the LLVM IR for further optimization and code generation for target hardware
(which may yet have additional machine-specific optimizations). The aim of MLIR is to provide a
super-extensible system that allows DSLs to lower naturally to MLIR and LLVM IR, accelerating
innovations in hardware, compiler algorithms, and high-level abstractions.

For emerging architectures, DSLs allow a path for integration into an existing ecosystem and
likely help them target which operators are most important to examine. They also set a bar for
measuring the benefit of the emerging architecture, independently of marketing claims. For
example, neuromorphic architecture holds enormous promise for building more powerful and
efficient machine learning systems, yet it has been difficult to integrate these architectures with
runtime systems to enable problem-solving. The use of IR can help decouple the evolution of
neuromorphic hardware and software, ultimately increasing the interoperability between
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platforms and improving accessibility to neuromorphic technologies as shown in Figure 53b
(Pedersen et al. 2023). The potential for DSLs to unlock practical use of these architectures is
worthy of extensive study.
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Figure 53. Neuromorphic intermediate representation. a) MLIR compilation process through language-specific
intermediate representations. b) Example of IR that allows for continuous-time representation of nodes that can then
be executed on continuous-time hardware or simulators, or discretized for use on discrete-time hardware or
simulators. Source: (a) Lattner and Pienaar 2019; (b) Pedersen et al. 2023.
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2.4.6.2 Adoption of Existing Compute Cores in Domain-Specific Architectures

Even though DSAs are tailored for domain-specific workloads, the modern design approach
allows DSAs to tap into well-developed software ecosystems, depending on the overlap with
existing architectures. Licensable processor cores, such as Arm and x86, and open-source
RISC-V can be incorporated into the DSA chip design, thereby gaining access to operating
systems, compilers, and high-level applications with comparative ease. The minimal RISC-V
core can be implemented in as few as 15,000 gates (Lattner 2021), making its incorporation a
very low burden on a custom chip with billions of transistors. Figure 54 shows an example of
this design approach for an experimental neuromorphic computer architecture with an
embedded RISC-V core.
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The pace of software innovation will become a limiting factor unless it can keep up with the pace
of architectural innovation. There is room for further maturation and standardization to enable
existing software ecosystems to be seamlessly recompiled and executed on new DSA
architectures. Development of a fairly standardized design framework for the interface between
custom accelerator architectures and the higher-level environment will streamline software
development for these accelerators using principles of co-design.

m Shared memory (L2) 512 KB

TCDM BUS

I Digital core

Figure 54. An example neuromorphic computer architecture with embedded RISC-V processor.Source: MICAS
2023

2.4.6.3 Reusable Memory Access Control Architecture

One challenge in typical design practice today is for each accelerator to have its own bespoke
memory hierarchy and associated circuitry design. This follows quite naturally from one of the
main motivations of custom accelerators, which is to take explicit control of data flow as
specifically demanded for a specific planned workload. Yet there is potential to accomplish this
control while adhering to a reusable memory access control architecture.

The memory “buffets” concept (Pellauer et al. 2019) provides for explicit, composable data
transfers between a custom chip and the external memory. Access requests are decoupled from
the request receiver, thereby reducing or eliminating the need for on-chip buffering. The design
of buffets has been publicly released in RTL code and is flexible enough to fulfill the needs for
memory access architecture in a variety of use cases. Such flexibility in efficient memory access
could facilitate acceleration of sparse matrix math operations, taking advantage of the data
sparsity that is not accommodated well in current accelerators by avoiding time and energy
expended transferring mostly zeroes and instead transferring only nonzero data.

2.4.6.4 CIM, Neuromorphic Computing, and Spiking Neural Networks (SNNs)

The successes of large neural network models have spurred innovation in machine
architectures aimed explicitly at neural network processing. Many architectural adaptations have
been made in GPU design, as well as in FPGA and TPU accelerators (as discussed in Chapter
2.2), to process neural networks more efficiently. To achieve still greater energy efficiency and
performance, computer architects have turned to brain-inspired “neuromorphic” computing
designs, which mimic observed features of biological brains in silicon. Figure 55 illustrates two
such architectural paradigms being actively explored as alternatives to the von Neumann
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architecture and their associated challenges. Although the term “neuromorphic computing” most
often refers to architectures that include inter-neuron signaling via variable-timed spikes in
“spiking neural networks” (SNNs), all neural networks are brain-inspired. The term
“neuromorphic” can refer to a wide class of architectures, including all-digital designs and
mixed-signal designs with some analog circuitry as part of the network, particularly in the form
or programmable resistance elements to represent the model weights. The existing and
emerging device technologies for neuromorphic computing were discussed in section 2.1.7,
while emerging circuit architectures for both digital and analog compute-in-memory were
discussed in sections 2.3.2 and 2.3.3, respectively.
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Figure 55. Von Neumann, resistive crossbar, and spiking neuromorphic architecture paradigms and
challenges.Source: Aimone and Agarwal 2024

The common feature of brain-inspired or neuromorphic architectures is reorganization of the
compute and memory elements to situate them as close as possible to one another to minimize
the distance that data must move. Because most ML networks have static hyperparameters
(once trained and optimized), compute-in-memory provides an alternative to massive transfers
of data by storing the network hyperparameters (weights/kernels) within the memory/compute
array where MAC (multiply-accumulate) operations take place. This reduces the neural network
model’'s memory transfers during runtime. Storing the network parameters once as part of the
initialization of the compute array means there is no need for memory transactions during run-
time, which results in lower latency as well as lower power consumption per inference.
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Digital compute-in-memory (CIM)

CIM is a promising avenue to alleviate data I |

movement bottlenecks but poses Partial Sum NoC

challenges for implementation in software. Bl

Digital CIM is not an extreme departure in Partial Sum [l Weight

terms of an architecture: it is moving B Buie

compute closer to or in memory within a
digital architecture. Some examples of

digital CIM are already commercially Control Unified

available, including UPMEM (UPMEM oy

2023) and the IBM NorthPole architecture Frogem A&E‘,’:S;“

(Modha et al. 2023). In the case of UPMEM, e
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In the case of NorthPole (see Figure 56), 1ematic of an individual core (one of 256)
the chip runs a network model with its own
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or 8,192 operations per cycle for 8-, 4-, and o
2-bit precision, respectively), with memory Q I
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computing circuits. As a result, it has e
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(measured in frames per second per watt)
for the ResNet50 image classification (b) Host interface
benchmark, compared to energy efficiency Figure 56. IBM NorthPole digital neuromorphic
performance with an H100 GPU. chip.Source: Modha et al. 2023

Analog CIM

Analog crossbar multiplier arrays (see section 2.1.7), an alternative to digital matrix
multiplication for linear algebra operations, are the foundation of existing machine learning
algorithms. They offer the possibility of dramatic reductions in energy (see section 2.2.3), but
have thus far found limited application due to the low precision achievable with analog circuitry.
However, as Aimone and Agarwal (2024) have pointed out, precision is an emergent property of
digital circuit design because individual transistors have only single-bit precision. Song et al.
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(2024) recently demonstrated a method combining architecture and algorithm to achieve
arbitrarily high precision with analog crossbar arrays, as depicted in Figure 57. The method
dedicates subsequent crossbars to address the residual error (the difference between desired
and realized precision) to reach the overall desired precision while maintaining a substantial
energy advantage over conventional digital operations. This approach may not only enable
more energy-efficient neural network processing but it also may be applied to more conventional
numerical analysis tasks that require high-precision matrix multiplication.
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Figure 57. Architecture and algorithm to achieve arbitrarily high precision with analog crossbar multipliers.
(a) Traditional crossbar arrays with ADCs and additional postprocessing circuits; (b) proposed arbitrary precision
programming circuit with shared ADCs; (c) example of programming a numerical value A=1 into multiple memristor
devices step by step; (d) flowchart of the arbitrarily high-precision programming algorithms. Source: Song et al. 2024.

Spiking neural networks (SNNs)

Prominent examples of spiking neuromorphic computers include the SpiNNaker computer of the
Human Brain Project (Human Brain Project 2023), the Intel Loihi project (Intel 2023b), and the
IBM TrueNorth project (Akopyan et al. 2015). Analog neuromorphic computing using ReRAM or
silicon photonics, Ising rings, etc., offers huge potential gains in energy efficiency, but the
discovery of effective algorithms for training SNNs has proven to be a difficult software
challenge. The standard back-propagation method of training other neural networks is
incompatible with SNNs. Alternative approaches for training have included strategies to
approximate the back-propagation algorithm, to convert networks trained on conventional DNNs
to run on SNNs, and to train SNNs directly through evolutionary algorithms (simulating evolution
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through survival of the fittest, reproduction with intermixing, and mutation) (Schuman et al.
2022). Despite the difficulties in training them, SNNs have demonstrated some success. For
example, the Intel Loihi consumes 5-100x less energy than conventional DNNs for keyword
spotting in speech recognition. For bio-inspired odor recognition, Intel Loihi is 3,000x more data-
efficient than DNNs (Intel 2020).

Challenges and solution pathways for CIM, neuromorphic computing, and SNNs

At present, digital CIM architectures are much better positioned than analog CIM architectures
to gain widespread use, but these systems also present challenges for software. It is desirable
to implement CIM relatively transparently while shielding hardware details from programmers in
the same way the memory hierarchy does. Issues of automatically parallelizing sequential
programs, managing the data layout in memory to implement computations, and incorporating
in-memory operations within the memory hierarchy logic remain to be addressed at scale.

Although neuromorphic computing is being evaluated widely, there are currently no real-world
applications of neuromorphic computing that have exploited native hardware implementation.
Many challenges must be addressed to realize the energy efficiency benefits of CIM,
neuromorphic, and SNN architectures (Schuman et al. 2022):

e Widening algorithmic focus: The lack of good native training methods for SNNs has
meant that much of the reported SNN performance has come from applications where
conventional software-based neural network solutions already exist, and SNN
implementations were mapped from a DNN to the SNN. Further exploration of
neuroscience-inspired approaches may yield higher performance networks. The use of
SNNs for exploratory neuroscience is itself an important research direction that may yield
better understanding of both SNNs and biological brains.

o Wider availability of machines and simulators: There have been several high-profile
neuromorphic computer systems, as previously mentioned, that have provided access for
diverse groups to experiment with. Wider availability of development systems will enable a
much larger community to develop, leading to faster discovery of viable algorithms.

o Enabling use in heterogeneous compute environments: Neuromorphic compute
engines’ reliance on the facilities of a host computer may impose overheads that hinder their
performance and prevent commercial viability. It is important to achieve the optimal balance
between performance and energy efficiency. Careful design of interfaces between
neuromorphic chips and other compute elements—especially for edge computing, where the
low power requirements of neuromorphic processors are most attractive—is a must.

o Better benchmarks: Because it has been difficult to find problems for which neuromorphic
computing is particularly well-suited, current benchmarks tend to rely on problems already
effectively solved with conventional networks. Articulate important use cases to define
appropriate benchmarks for neuromorphic computers.

o Better programming abstractions: The fundamental lack of understanding of
computational primitives, abstractions, and representations means that further studies for
emerging architectures are essential.
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2.4.6.5 Data Compression

Data compression reduces the high costs associated with data movement by increasing the
information density of the data, potentially aligning with near-term EES2 goals. It is particularly
valuable in contexts with slow file I/O systems, long-distance communication links, and
significant associated energy costs. When the energy saved by reducing data volume exceeds
the energy spent in compressing and decompressing data, the efficiency gains are substantial.
However, the benefits are less pronounced within computer systems, such as in data transfers
between main memory and virtual memory or between main memory and cache, where the
overhead of compression often outweighs the energy savings, resulting in modest compression
ratios.

Nevertheless, there has been work in compression. NVIDIA offers a standard compression
library called nvcomp that enables compressed I/O in GPU systems (Sakharnykh, LaSalle, and
Karsin 2020). ZeroPoint Technologies has introduced an IP product called Cache-MX that
provides data compression of cache lines for L2 and L3 caches (but not for the most time-
sensitive L1 cache). Cache-MX is an add-in to the last-level cache controller that performs
compression, decompression, and compaction to effectively double the (logical) size of the
cache, with an increased latency penalty of 9 cycles for a 1.6 GHz (or potentially faster) clock.
This compression delivers higher performance for the same power expenditure, either with
larger apparent cache size or with chip real estate freed up for other functionality.

Generally, data compression in a computer system must be lossless. But in connection with
approximate computing or analog computing architectures, there may be opportunities for
higher compression in lossy compression schemes. For data compression to be beneficial, the
full accounting must include energy estimates for access, compression, decompression,
transmission, and the relevant computation. Although compression may worsen latency, the
overall effect may lead to an efficiency gain because fewer bits are transferred after
compression.

Exploiting a priori knowledge of the information domain of the data being communicated can
yield large improvements in compression (Weissman 2022). For example, the algorithms used
widely for audio and video compression exploit knowledge of human perceptual processing to
achieve much better compression than would be possible without this knowledge. Tsai and
Sanchez (2019) proposed a method for compressing software objects using the logical structure
of those objects to achieve better compression ratios. Analogously to domain-specific computer
architectures, domain-specific compression algorithms may lead to significant reductions in data
movement with consequent improvements in energy efficiency.

2.4.6.6 Precision of Data Types

As shown in Figure 7 of the Introduction, higher numerical precision comes with an energy cost.
For example, adds of 32-bit floating point (“FP32”) require 5.4 times more energy than adds of
8-bit integers (“INT8”), while multiplies require 18.7 times more energy for FP32 versus INT8
data precision. These comparisons account for only the arithmetic operation itself and not the
energy cost of moving the operands to and from memory, which is of course also proportional to
precision. Clearly, data precision has an important energy impact.
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Floating point representation of real numbers Sign  Exponent Mantissa

in terms of a number of bits of a mantissa, or p32 w
“significand,” with additional bits representing

an exponent and a bit representing sign

(essentially a binary version of scientific P18 D:D:D-

notation), were introduced with the first omoas [T LT T PEEEEEH

electromechanical calculators. The IEEE 754

standard (IEEE 2019) for single-precision, s CEEREEEE ~ CEEH

double-precision, and quad-precision floating

point was issued in 1985, leading to stability doun STz o T
and identical results among computers (Athow

2014). There has been continued significant [D:D:D:D [- [-[- [-

innovation in floating point representation, [- [-[- [-
driven primarily by the massive data T T

throughput required for many ML applications. , . . .
« . " . . Figure 58. Integer and floating-point numeric
The “brain float” 16-bit representation that has representations. MSFP is a distributed floating-

become widely used in ML applications trades point representation proposed by Microsoft.
some precision in the mantissa for additional

dynamic range in the exponent. A team at the

Barcelona Supercomputer Center, together with Intel, has developed a method to achieve
higher precision by combining bfloat16 values, thus eliminating the need to implement both
bfloat16 and fp32 hardware on a chip (Genkina 2022). Figure 58 illustrates several numeric
formats, including a distributed “MSFP” floating point format proposed by Microsoft (Rouhani et
al. 2020), in which a single exponent is used in common for a block of mantissa values. This is
useful for very hardware-efficient matrix dot-product computations and makes a compromise
between the efficiency of integer math, which is subject to underflow or overflow with numerical
outliers, and floating point, which has a separate exponent allocated to each value.

KSniiree Rnithani ot al 2020

Innovation in efficient number representation is ongoing. Opportunities exist for improvement,
not only for machine learning but for other applications such as scientific computing, which has
typically used higher precision floating point formats. In an effort to increase effective memory
bandwidth, a team at Lawrence Livermore National Laboratory is developing floating point
compression techniques to discard bits lacking useful information (Hittinger et al. 2019). Further
exploration of novel combinations of smaller data types able to realize higher precision, efficient
mixed-precision computation, and distributed representation similar to the MSFP format can
reduce the memory traffic required to support computations.

Proliferation of numeric type representations also means proliferation of software required for
conversion between formats and carries the risk of many different implementations having slight
incompatibilities. Therefore, efforts to promote standardization of new, more efficient formats will
be benéeficial.
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2.4.6.7 Tightly Coupled Architecture and Software Co-design

Every novel computing paradigm—quantum computing, neuromorphic computing, biologically
inspired computing, optical computing, etc.—must first be reduced to practice sufficiently that a
machine architecture can be defined. It is then the job of software to provide appropriate logical
abstractions to relate what programmers want to do to the low-level compute paradigm. Energy
savings from new architectures are possible only when the new architecture is accompanied by
software enabling it to perform its improved functions. Shortening the timescale delivers energy
savings sooner, and this can be facilitated by tightly coupled architecture and software co-
design.

This is already happening in emerging technologies. For example, IBM already has an
assembler and compiler called OpenQASM for their quantum computing hardware (Cross et al.
2022) which has been used to develop and test a robust set of benchmarks (Li et al. 2020).
Another more recent example is the NorthPole brain-inspired neural processor developed by
IBM (Modha et al. 2023). NorthPole’s chip design, aimed at energy-efficient neural inference at
the edge, was introduced alongside a full

software development suite that includes

a compiler, chip simulator, and validator to API

validate both the compiler and input z

algorithms. The concurrent availability of § Package

these tools should facilitate rapid testing §

and commercial implementation of £ Prototype

solutions using the NorthPole architecture. ? _

In general, as illustrated conceptually in Algorithm

Figure 59, software must follow R £5 Q£ TE =
architecture, but the gap between that s& 52 §z sz &%
hardware availability and usable software = a S

can be reduced by tightly coupled Hardwaremmuriwu
hardware/software co-design teams.

Software may need a longer time to Figure 59. Early engagement between hardware and

. software designers yields better software sooner.
mature in order to adapt the new g y

architecture into the wider computing

ecosystem and provide compatibility with existing software interfaces. Co-design early in the
process can lead to quicker adoption of new energy-saving architectures and acceleration of
overall energy efficiency.

Action plan for software for domain-specific and emerging architectures

Table 62. Action Plan for Software for Domain-Specific and Emerging Architectures.

Technical Challenge for

Energy Efficiency Software for Domain-Specific and Emerging Architectures

Domain-specific languages

Data buffets

Quantum programming

Neuromorphic programming

Data compression

Hierarchical algorithms for different scales

Technologies of Interest
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Challenges Solution Pathway

e Support interface standards for domain-specific

numeric data types

. Achieving reduction in energy use through lower-level data
compression applications
. Ensuring compatibility and efficient interchangeability of emerging

. Lack of systematic studies on accuracy versus performance

architectures

e Support infrastructure and community to aid
development of neuromorphic computing and

compute-in-memory software

e Develop domain-specific data compression

strategies

e Promote standardization of data types for

information interchange

Major Tasks / Milestones Metrics Targets Timeline
rcéui?:grlng':?sn fg: Tar:'e:gyset of Identify metrics for different sets of
sc?entific simulationg and algorithms that span the areas of Measure benchmarks 1-2 years
machine learning algorithms TS
Support compiler ) . .
infrastructure for domain- Time to |mgl)$nm32: a working <3 months 2 years
specific languages P
Promote adoption of data
buffet architecture in domain- Number of chips incorporating buffet o .
specific hardware through design HEl GE HEEe HiEEe
standards
l_)eve_lop robus_t_ software Maturity and functional Fully implemented libraries in
libraries exploiting data 3 years
buffets completeness C/C++, Python, Java
Develop software prototypes _ .
for compute-in-memory CempEElly vgletlr;;anguage ) 100% compatibility 5-7 years
architecture
Discovery of effective training Computational effort to reach target No more than other neural network 7-10 vears
strategies for SNNs accuracy models Y
Develop high-level Multiple commercially significant _
programming tools for SNNs Useful models/use cases supported models 7-10 years
Prolifarate open-source Availability of development At least one robust development
hardware/simulation 7-10 years
platforms for SNNs ecosystems ecosystem
c?c?;?a?ﬁ-?géiisfisﬁ:fg::nation Compression ratio >50% 3-5 years
Standards for reduced
precision/higher efficiency Compatibility of implementations 100% compatibility 5 years

numeric representations
Stakeholders and Potential Roles in Project

Required Resources

. Industry working groups for standardization of interfaces.
. Research funding for architectural and software innovation.

Cross-Collaboration with Other Working Groups

Circuits and Architectures: Software opportunities described in
this section follow from architectural innovation;close
collaboration in software and architecture will yield better and
faster results.

Stakeholder Role
Industry Groups formulate and adopt software standards for domain-specific and emerging architecture.
End Users/OEMs Commercialize new capabilities.
Academia Explore cutting edge algorithms and architectures.
National Laboratories Host laboratories and services for the development community.
Government Provide funding for shared high-performance hardware resources.

2.4.7 Conclusion for Algorithms and Software

Some improvement in energy efficiency can be gained by optimizing common software

functions, particularly in making effective parallelization of software more routine. These
improvements must remain fully compatible with existing codebases to be acceptable. Although
this is a major challenge, the application of new approaches such as machine learning in the
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optimization of software may realize major gains. Still greater gains can be achieved in the
emerging field of machine learning, where the fundamental limits of algorithmic efficiency are
yet to be discovered, as well as in software supporting emerging architectures, where innovative
designs continue to be developed for many applications. All software development will benefit
from profiling tools that enable programmers to probe energy efficiency of code at a fine-grained
level. Those same tools, combined with benchmarking across the major use cases of
computing, will enable tracking of industry progress toward EES2 goals.
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3 Enablers

The four Enabler working groups—Power and Control Electronics, Manufacturing Energy
Efficiency and Sustainability, Metrology and Benchmarking, and Education and Workforce
Development—cover enabling technologies and approaches in order to address the tools,
processes, and technologies needed to support the advances in the compute stack described in
the previous chapters.

3.1 Power and Control Electronics (PACE)

Power and control electronics (PACE) refers to an interdisciplinary field with roots in electrical
engineering and technology development. This field focuses on the design, development, and
application of electronic systems and devices responsible for managing and regulating the use
of electricity as an energy source. These systems play a critical role in controlling the
generation, conversion, distribution, and utilization of electrical energy. Since they often involve
components and circuits designed for the control and automation of various processes, these
systems and devices are integral to a wide range of applications, including power supplies,
motor drives, renewable energy systems, industrial automation, and more.

PACE and microelectronics are two distinct branches within the broader field of electrical
engineering that focus on different aspects of electronic systems. The two branches are
generally differentiated by the intended purpose in use, the scale at which they are applied, and
the underlying devices and components they utilize. The differences between PACE and
microelectronics are further described in Table 63.

Table 63. Power and Control Electronics and Microelectronics Fields.

Power and Efficiently manage the generation, | High voltage Power
Control distribution, conversion, and and high power | semiconductors
Electronics control of electrical power. over time (e.g., thyristors,

IGBTs, MOSFETS,
diodes), power
converters, voltage
regulators, motor
drives, and control

systems
Microelectronics | The miniaturization of electronic Miniaturization Transistors,
components, the fabrication of over time, integrated circuits,
integrated circuits (Ics), and the currently systems-on-a-chip
development of semiconductor allowing billions
devices, such as of transistors on

microprocessors, memory chips, a single chip
and other integrated circuits.

In summary, while PACE focuses on managing and controlling the delivery of electric power,
microelectronics considers the development and integration of electronic components to create
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devices for computation and telecommunication. At their heart, both device classes are built on
semiconductor technology, though differences exist in their respective design objectives.

Use of PACE in computing environments

In the computing industry, PACE are essential for ensuring the reliable and efficient operation of
electronic devices, from personal computers to data centers. PACE serve several key uses in
computing, including:

¢ Uninterruptible power supplies (UPS): UPS systems are used to ensure that critical
pieces of equipment never experience a power outage. At their simplest, UPS systems
detect when a utility power supply becomes unavailable and use high-speed switches and
battery energy storage to provide an alternative electricity supply. In their most advanced
form, UPS systems use power electronics to recondition utility electricity supplies in real-
time, removing any variations or fluctuations in voltage or frequency, which ensures high
power quality for sensitive equipment.

o Power distribution units (PDU): PDUs are devices used to distribute electric power to
individual server racks. At the simplest level, these devices are analogous to the power
strips used in homes and offices to supply electricity to many devices at once. However,
PDUs can be much more complicated. In most modern data center facilities, PDUs contain
monitoring and control equipment to provide granular insight into energy use and to
remotely control power delivery to individual servers or devices. In some data center
facilities, PDUs also contain voltage transformers, which are used to reduce power
distribution from the UPS output voltage level to a lower voltage that is more suitable for use
by the electronic equipment. PDUs may also represent the point at which individual phases
branch off from the three-phase utility electrical supply (e.g., step down from 480 V AC, 3-
phase to 120 V AC, single phase).

o Switching power supplies: These are widely used in computer systems to convert
electrical power from the main power source (usually the electrical grid) into the various DC
voltages needed by different components within the computer, such as the motherboard,
central processing unit (CPU), and graphics processing unit (GPU).

e Voltage regulators: Power electronics are used to regulate and stabilize the voltage
supplied to sensitive components in computers. Voltage regulators are used to ensure that
the voltage supplied to critical devices, like processors, maintains a constant value, as even
small fluctuations in voltage can cause damage. This regulation of the voltage is crucial for
preventing damage and ensuring the proper functioning of Ics, circuit components, and
subsystems.

¢ Variable speed fans and pumps for cooling systems: Power electronics control the
speed of fans and pumps in computer systems to optimize air and liquid-based cooling
systems. This process is crucial for maintaining the operating temperature of components
within acceptable limits. On a larger scale, similar power electronics equipment is often used
to control the HVAC systems within data centers.

o Power factor correction (PFC) systems, which support energy efficiency: PFC
systems, using power electronics, are employed to improve the power factor of computing
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equipment and the motor loads that drive data center cooling systems. PFC is a method for
reducing energy consumption and improving overall efficiency in alternating current (AC)
electrical systems.

In the context of a data center, these power electronic devices are used to provide conditioned
electrical power to information and communication technology (ICT) devices, which may include
servers and computers; devices such as switches, routers, wireless access points, power-over-
ethernet devices, and telecommunication systems; and storage devices and digital signal
processing equipment.

Power and control electronics are foundational to the functioning of computing systems,
ensuring reliable power delivery, energy efficiency, and the overall performance and longevity of
electronic components in a wide range of computing devices and infrastructure.

Relevance to EES2

The PACE working group considered the role that these devices play in supporting the
computing infrastructure being explored in other working groups (Materials and Devices,
Circuits and Architectures, and Algorithms and Software). PACE supports the proper operation
of computing infrastructure and has a direct impact on the energy consumed by
microelectronics devices.

All the electrical energy consumed by computing systems passes first through power electronic
devices, which are regulated by control systems. If these devices and controls are inefficient,
the total energy demand for a computing facility may far exceed the energy input required to run
the intended computational equipment. Additionally, energy losses associated with PACE are
converted into waste heat that must be removed from computing facilities.

The technical approaches described in the PACE section are organized as follows: Dynamic
computing load management techniques are described first. These techniques directly
manipulate the power delivered to computing devices to reduce power consumption. Next,
advanced and emerging thermal management approaches are described since new approaches
will be needed to accommodate emerging circuit architectures with increasing thermal
management requirements. Lastly, the PACE section describes the enhanced modeling,
analysis, and simulation needs for empowering future co-design efforts in support of the next
generation of energy-efficient devices and computing facilities.

Working group methodology

The PACE working group sought to better understand the contribution of power electronics and
their control systems to the energy efficiency of computing devices in operation. The working
group explored the use of PACE in computing environments, noting standard industry practices
and potential areas of innovation. The working group concluded that best-in-class power
electronics do not represent significant sources of power consumption or loss in modern and
newly constructed data centers. Furthermore, industry-standard practices related to controlling
power delivery are effective in eliminating losses and ensuring highly efficient power delivery.
However, there are related concepts that warrant further consideration in future iterations of the
EES2 roadmap. Though these related concepts may not represent power electronics and
control challenges or solutions directly, they do address broader challenges related to the
design, implementation, and optimization of power delivery for emerging architectures.
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The diagram in Figure 60 presents the estimated energy efficiency factors and related timelines
for the technological approaches recommended by the PACE working group. These approaches
are described in more detail in the subsequent sections, and activities related to the timelines
referenced are noted in the action plans contained in this chapter.
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Figure 60. Potential efficiency improvement factor vs. timeline for PACE technologies.

Key takeaways

The following tables present and summarize the PACE-related technologies recommended for
further investigation, as well as the major contributions each recommended technology makes
to energy efficiency.

Table 64. Key Opportunities for PACE Technology.

Technolo i _
9y Key Opportunities for Energy Efficiency
Group
V. ® \While modern servers have standby modes that consume much less power
4 h N than in their active states, most servers still consume 80% of their total lifetime
N/ ' electric power while in standby mode.
Dynaml(_: N/ e Turning devices off completely could increase server efficiency by 5X. This
Computing Load represents significant global savings, given the growing installed base of
Management servers worldwide.
e Shifting workloads to data centers with more efficient computing resources or
available renewable power can effectively reduce global computational energy
use.
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Management

Advanced Thermal °

Technologies o

Energy densities are increasing in emerging computer architectures, requiring
novel strategies for removing heat from circuits while in operation.

Most data centers currently use forced air cooling, but technical limits will
reduce the use of this technology in the future.

Techniques for cooling that involve immersion in liquid, coolant distribution via

microchannels, and phase-change materials offer new opportunities for
managing heat removal in future computing devices.

Design Capabilities '\.

Enhancing .\ °

Modeling, ——"
Simulation, and Co- = Y .

Using presently available software packages for microelectronics design, it is
difficult to connect energy performance at the device level to overall energy
performance at the facility level.

It is nearly impossible to weigh the impact of device-level design changes on
high-level system energy consumption.

Extensions are needed to the capabilities of modern design and analysis
software programs, to allow co-simulation, co-optimization of system design
properties, and validation of design changes.

Enhanced co-design tools will enable the design of future computing systems
that are globally optimized to reduce power consumption.

Table 65. PACE Technology Grouping.

Dynamic Computing
Load Management

Reduction of idle power consumption

Resource-aware compute scheduling

Advanced Thermal
Management
Technologies

Diamond copper nanocomposite heat
sink

Water cooled heat sink

Direct liquid cooling

Immersion cooling, single phase

Immersion cooling, dual phase

Enhancing Modeling,
Simulation, and Co-
Design Capabilities

Multi-scale co-design tools

Multi-domain co-simulation

In-simulation reliability and economic
analysis

Grand challenges

The following challenges must be addressed to realize the potential contributions of PACE

technologies toward EES2 goals:

¢ Architecture-specific power delivery optimization: As new device architectures are
developed (2.5/3D, neuromorphic, PICs, etc.) power delivery approaches will need to
become more specialized to each architecture. The power delivery needs of each
emerging architecture will need to be independently assessed and accounted for.

o Enhanced co-design capabilities: To fully understand implications for energy
efficiency, electricity delivery needs to be co-designed with circuits and architectures.
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Improvements in design and simulation tools can help to elucidate design tradeoffs
related to energy efficiency.

e Thermal management: Despite significant improvements in thermal management at the
data center level, emerging architectures will require new approaches to on-chip thermal
management due to increases in energy density and dimensionality. Thermal
management is an integral part of power delivery optimization and innovations will be
required.

¢ Applying innovations in non-data-center contexts and legacy computing facilities:
New data centers are being built at massive scales and with impressive innovations
included by default. What remains unclear is the percentage of legacy computing
equipment, the computational work being performed in non-data-center contexts, and
the energy efficiency burden that legacy equipment represents. There may be
opportunities to incentivize energy efficiency upgrades for computing equipment housed
in non-data-center facilities (e.g., hospitals, research centers, academic institutions,
etc.).

3.1.1 State of the Art and Benchmarks
Overview of Data Center Power Distribution

Power distribution systems for data centers are designed to ensure reliability and safety. Any
interruptions in the flow of electricity to computational equipment can be costly for data center
owners and operators. Therefore, power system design for data centers prioritizes the use of
redundant and varied supplies of energy. Since different electricity sources (e.g., an electric
utility connection, a diesel generator, an electrochemical battery system, etc.) have different
characteristics (voltage fluctuations, disturbances, frequency variations, harmonic distortion
levels), methods are used to ensure the same quality of electricity is delivered to sensitive
electronic devices. For this reason, double-conversion UPS systems are commonly used in data
centers: Each UPS contains a power electronic rectifier, which converts the included AC utility
waveform into a DC electrical signal. The UPS then utilizes an inverter (which is another class
of power electronics devices) to create a new AC waveform with consistent power quality.
These UPS systems also utilize energy storage (typically in the form of electrochemical
batteries) to maintain a consistent power supply in the event of a short-duration outage in the
primary (utility) electrical supply. For longer-duration outages, onsite diesel backup generators
are typically utilized to supply power to data centers until utility power can be restored.

Power distribution architectures can vary between data center facilities. Different facility owners
and operators employ a variety of strategies to ensure redundancy, enhance reliability, and
achieve high power quality. The diagram in Figure 61 provides an overview of different power
delivery architectures for data centers. Though the configuration and interconnection of devices
may change, the primary components stay consistent: namely, utility power supplies,
distribution transformers, panels and switchgear, backup generators, UPSs, and IT loads.

Figure 62 shows a more streamlined view of power delivery to IT and ICT devices within a data
center. This view emphasizes the power electronics devices typically included in the power
delivery chain that feed computational devices. As shown, every electron utilized within a
computational device must first pass through a long chain of power conversion, conditioning,

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 231



Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

and control steps. As energy is converted from one form to another, waste heat is generated,
which must be removed from the facility using HVAC equipment.
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Figure 61. Common power distribution architectures for data centers.Source: Paananen 2023

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 232




Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

Diesel

A}
1
1

- -

Generator : AU

L AC/DC - DC/AC ————— 1-2V
! ‘|’ AC |1 ~—AC/DC | —— IDC/AC .| pC/DC ——
1 + : 1 DC
1 1 a
! |UPS double | SRR Server
1
\

_______________________________________________

Redundancy

Figure 62. Power electronics in the data center power delivery chain.Source: Sun et al. 2018

End-to-End Efficiency in Data Centers

Power use effectiveness (PUE) is a metric that has become popular as a means for
communicating the energy efficiency of an operational data center (Gillis and Fontecchio 2022).
The PUE metric seeks to capture the extent to which energy consumed within a data center is
utilized for computation, the primary purpose of the data center. In practice, data centers
consume energy in power conversion equipment, control systems, HVAC systems, and auxiliary
building systems. PUE is calculated as the ratio of total energy consumed in a data center to
energy consumed specifically by IT equipment. A ratio of 1 would represent 100% of data center
facility power being consumed by the intended IT equipment. A PUE efficiency of 3 would mean
the facility overall uses three times the amount of power as the IT equipment alone, which is
highly inefficient.

In the early 2000s, data centers were reporting an average PUE of 3 or more (de Jong and
Vaessen 2007). The industry recognized a need for improvement and resources were dedicated
to improvement. In the last two decades, tremendous improvements have been realized.
Modern data centers now achieve an average PUE of 1.57 (Bizo et al. 2021), with industry-
leading facilities achieving a PUE as low as 1.06. The average PUE for all Google data centers
is 1.10 (Google 2023).

Required Cooling Load in Data Centers

To achieve these PUE improvements, data centers have introduced remarkable innovations in
the management and control of cooling systems. As computational devices operate within a
data center, they produce heat as a natural byproduct. Data center cooling systems work to
ventilate this air, replacing it with cooled air, which prevents temperature rises that could
damage electronics. Airflow management systems are used to control the flow of air across
computing devices. These systems have evolved, incorporating tight seals, plates, and fittings
to ensure that exhaust and intake air systems are not able to mix. Precision control of air
delivery and removal has greatly improved cooling efficiency for data centers. In some
instances, like supercomputing and high-performance computing systems, liquid cooling
solutions replace forced air movement.

What could be considered the greatest innovation in cooling efficiency involves the use of “free
cooling solutions,” which are made possible by geographically locating data centers in
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advantageous locations, such as those with naturally occurring cold water sources or lower
ambient air temperatures. In these locations, air and water can be circulated without the use of
compressor-based refrigeration systems, which drive energy use in modern cooling and HVAC
systems.

With decades of investment, cooling has gone from the highest energy consumer within a data
center to a much less significant portion of overall data center power use, which has contributed
significantly to the increases seen in data center PUE.

Power Electronics Conversion Efficiency for Data Center Power Delivery

A variety of power electronics devices are required to condition power for computing equipment
within a data center. Power electronics converters are devices that are used to convert between
alternating current and direct current electricity distribution, or to convert between voltage levels.
Table 66 summarizes the common power electronics converters that are found in data centers.

Table 66. Common Power Electronics Converters in Data Centers.

Rectifier | Converts from AC to | Used within UPS systems to eliminate fluctuations
DC in utility or generator supply voltages.

Also used in server power supplies to create the
DC voltages required to operate electronics.

Inverter Converts from DC to | Used in UPS systems to recreate AC waveforms

AC that are high quality and well-regulated.
Buck Reduces DC voltage | May be used in PDUs or PSUs to further reduce
Converter | levels DC voltages after rectification. For instance,

rectifiers in data centers often produce voltages
between 300 V and 400 V DC. Buck converters are
used to produce a regulated 12 V or 48 V supply
for on-chip power distribution.

Given the prevalence of power electronics converters within data centers, efforts have been
made to increase their efficiency. Inefficient converters produce more waste heat, which building
HVAC systems must eliminate. Inefficient power electronics within a data center cause
subsequent increases in overall facility energy use. For this reason, power electronics have
been the focus of improvements in the last decade. Notably, two approaches have resulted in
increased efficiency in power electronics for data centers. Firstly, high-performance, wide-
bandgap (WBG) power semiconductors such as gallium nitride (GaN) and silicon carbide (SiC)
have replaced traditional silicon devices. These WBG materials allow devices to operate at
higher voltages, frequencies, and temperatures with greater efficiency. This means that power
electronics utilizing GaN and SiC can switch more quickly and lose less power, resulting in less
energy dissipation as heat. Consequently, data centers can reduce cooling requirements,
leading to lower energy consumption and operational costs. The robustness of these materials
also translates into smaller, lighter, and more reliable devices, making them ideal for the high-
density and high-reliability environment of data centers. The ability of GaN and SiC to handle
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higher power densities is critical in managing the intense power usage and thermal
management challenges inherent in modern data processing centers. By integrating these
advanced materials, data centers can significantly enhance their power converters efficiency as
high as 98% and 99% (for SiC and GaN devices, respectively) (Horn 2023). The introduction of
these advanced materials into the motor drives for cooling systems and Uninterruptible Power
Supply (UPS) systems marks a significant milestone, leading to unprecedented operational
efficiencies (GlobeNewswire 2023).

Secondly, data centers have increased the voltage at which electric power is distributed. This
reduces the current needed to transmit electric power, reducing the power losses associated
with electrical conduction (Edmonds 2022). Many data centers have increased DC distribution
voltages from a historical norm of 12 V DC to 48 V DC, thereby reducing conduction losses by
16x, as losses are proportional to the square of the current (Maxim Integrated 2023). In some
instances, data center owners have eliminated AC power distribution in much of their facilities,
choosing instead to distribute 380 V DC from the UPS systems directly to server power supplies
(Emerge Alliance 2023). This direct distribution not only increases system efficiency, but also
eliminates the need for load balancing and power factor correction, issues that derive explicitly
from the use of three-phase alternative current electricity distribution (O’shea 2016).

3.1.2 PACE Approaches for Reducing Computing Energy Use

The EES2 PACE working group brainstormed technology solutions and approaches wherein
PACE innovations could be used to enhance the overall energy efficiency of computing
infrastructure. The following technology categories emerged as a part of the discussion:

e Electricity supply innovations

e Data center power use improvements

e On-chip / On-package power management

¢ Architecture-specific power delivery innovations

e Dynamic computing load management

¢ Advanced thermal management techniques

e Enhanced modeling, simulation, and co-design capabilities

A subset of these technologies was explored by the PACE working group and resulted in the
development of various action plans. These action plans detail high-level strategies that can be
pursued to solve the challenges identified. The rest of the approaches were investigated by the
working group but were not recommended for further consideration as a part of the EES2
roadmap. These approaches are described in a separate section within this chapter, but do not
include action plans.

3.1.2.1 Dynamic Computing Load Management

Two techniques for reducing computing facility energy use by manipulating characteristics of the
computing load in a facility were discussed: 1) dynamically reducing power supplied to
equipment not in use, and 2) shifting demand from one data center location to a different data
center location where renewable energy resources were more readily available.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 235



Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

Dynamically turning off power to unused equipment

As demand changes in data centers, equipment utilization varies. Reducing energy delivery in
response to demand changes represents an approach for reducing overall energy use. Modern
data centers employ demand reduction approaches and can shift workloads over diverse
locations, optimizing power use and hardware utilization. Improvements have been made
regarding idle power consumption for servers, and power management techniques in data
centers empower operators to place limits on server power consumption during periods of low
utilization (Matthews and Maclean 2023). Studies have shown that power management
resources can reduce servers’ idle power consumption by up to 11%. Despite these benefits,
the same studies have shown that idle power consumption can still account for 50-90% of
overall power consumption for some servers. Turning servers off completely when not in use
could reduce server power consumption by an additional 30% beyond the improvements
possible through power management systems (IEA 2021), and the potential exists for more
broadly utilizing strategies that turn equipment off completely when not in use.

Challenges and solution pathways for dynamic computing load management

Efforts are needed to better understand the operating constraints and limitations associated with
cutting power to idle equipment, such as estimating impacts on equipment availability and
system flexibility. Modeling and experimentation are also needed to validate potential benefits
and tradeoffs. The EES2 community can play a leadership role in exploring the associated risks
and opportunities. The federal government can promote investigation through stakeholder
engagement and RDD&D investment.

Resource-Aware Distributed Computing

The term resource-aware computing can refer to the efficient scheduling and allocation of
workload in a single CPU across threads and cores in a multicore computing environment,
across servers in a data center, or across data centers in a regional, national, or global network.

Scheduling work on a machine to share the
computation resources (CPU, memory, 1/O)
most effectively among the active tasks has
been practiced since the advent of the first
multitasking computer systems in the
1960s. With the emergence of multicore
architectures, the job of the scheduler
expanded to allocate tasks across multiple
compute cores (see, for example, Tillenius
et al. 2015), and this scope quite naturally

0 30 60 90 120 150 180 210 240 270 300 330 360 expanded to scheduling resources across
Uay o8 Tear clusters in whole data centers (Vasile et al.
ﬁ 2015). With widespread optical fiber data
%, Renewables networks, the scheduling of workload can
Figure 63. Daily and hourly fraction of renewable be expanded to geogrgphlcally separated
energy in the California grid for 2022.Data source: data centers as well. Light travels 245
California ISO 2024 km/ms in optical fiber, so in the 5-10 ms

required for a magnetic disk reference, fiber
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optic communication can carry data 1,225-2,450 km (roughly the distance from Washington DC

to Chicago IL or Austin TX).

Recently, large data center operators have begun to consider the use of scheduling to reduce
their carbon footprint. Figure 63 illustrates how large that opportunity could be in the case of
electricity supply in California. The statewide supply of renewable energy shows a daily variation
from less than 20% at night to more than 50% virtually every day and exceeding 80% regularly
during the spring and autumn when longer days and cool weather combine to produce a high
output from the state’s large solar fleet and low heating and cooling loads. This temporal
distribution is typical in regions with high solar energy penetration, but the pattern can be
different, with more renewable energy availability at night in the windy regions of the midwestern

states.

Recent work by Google (Radovanovic et al. 2023) has implemented a Carbon-Intelligent
Compute Management system that is able to selectively delay the execution of temporally

flexible workloads to “greener” times (when
the local electricity mix is less carbon-
intensive). The system, illustrated
conceptually in Figure 64, monitors the
forecasted carbon intensity of the utility
energy supply to the facility. The system
then determines heuristically or explicitly
which workloads are not time-critical and
which can be shifted to times with lower
energy carbon content. However, the actual
measurements from Google data center
clusters demonstrated a power
consumption drop of only 1-2% during
times with the highest carbon intensity.

A team of engineers at Microsoft and
Carnegie Mellon University (Agarwal et al.
2021) introduced the concept of a virtual
battery, illustrated
conceptually in Figure 65.
In a virtual battery model,
multiple data centers are
located near (perhaps
collocated with) renewable
energy plants and joined
together via a wide-area
network (WAN). This
approach is a paradigm
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Figure 64. Google carbon-intelligent compute
management data center scheduling system
concept. Source: Radovanovic et al. 2023
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shifted to adapt to the availability of clean power. Virtual batteries shift demand by requiring
applications to either be flexible and delay-tolerant or proactively migrating to where power is
(going to be) available. The engineers noted that about half of the cost of utility-supplied
electricity is due to transmission and distribution, and they further claim that the energy cost of
shifting workload between data centers is negligible compared to the energy costs of
transmission and distribution. Thus, a strategy of relying mostly on self-generated renewable
power coupled with opportunistic geographic workload shifting can be very cost-effective.

Challenges and solution pathways for resource-aware distributed computing

This work is still in early stages, and efforts are needed to combine temporal and geographic
workload shifting to achieve maximum carbon footprint abatement. But with data centers now
consuming more than 1% of total electricity usage (Masanet et al. 2020), these efforts represent
immediate opportunities for significant economic benefits.

The migration of workload between data centers can be accompanied by power-saving
strategies such as frequency scaling and preferentially powering down components that are
older and less energy-efficient.

There is a need for more comprehensive modeling to examine the comparative cost of moving
the data versus moving the power and to improve real-time reporting of renewable energy
fraction in power generation that can be an input to application routing.

The benefits can be amplified through the management of this process in cooperation with utility
companies and grid operators. The transition to a carbon-free grid will come through massive
deployment of renewable energy generation and storage systems, but also, importantly, through
exploitation of load flexibility as a means of matching supply and demand. Data centers can
become a significant source of load flexibility that is needed for a carbon-free grid. A lot of
computation, such as database maintenance, is done on a scheduled basis; increasingly we will
be able to add periodic retraining updates for ML applications to the suite of flexible computation
loads. The EES2 community can play a leadership role in exploration of the intersections of
smart grid modernization and data center power management for maximum benefit.
Furthermore, the government can act as a convener to coordinate efforts between grid
operators and data center operators to engineer the systems for the maximum benefit to both
carbon abatement and grid stability.

Action plan for dynamic computing load management

Table 67. Action Plan for Dynamic Computing Load Management.

Technical Challenge for
Energy Efficiency

Reducing energy use in computing facilities through manipulation of electrical load.

. Reduced idle power consumption

Technologies of Interest: )
° Resource aware compute scheduling

Challenges Solution Pathway
. Optimizing both power consumption and performance in HPC . Extension of cloud scheduler algorithms and heuristics
compute center job scheduling; converged cloud/HPC workloads to optimization across multiple data centers with
in HPC centers. renewable resource availability as a constraint.
. Reducing the power consumption of idle servers in computing . Investigation of benefits and concerns associated with
facilities. temporarily eliminating power to idle equipment.

Major Tasks / Milestones Metrics Targets Timeline

Stochastic scheduling Resource utilization Optimal scheduling under uncertainty 3 years
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Multi-objective optimization Time to .s.erw.ce/power Right pareto profile for selecting the optimal 3 years
utilization scheduling strategy
Availability of short-term/medium-
term and long-term energy Accuracy 99% 1-2 years
forecasts
short/long/medium term 5
power/load forecasting Forecast accuracy 99% accuracy 3 years
Energy-Reliability tradeoffs in Energy efficiency (e
scheduling for on-prem HPC and oy cooling) y{€g. Optimality, energy efficiency 3 years
Cloud 9
; 90% of data centers participating
Development of coordinated ; Tl > - : -
regional workload scheduling Total load scheduling flexibility Daily shiftable load in MW 5 years
Identify operating constraints, quantify
Impact assessment for shuttin limitations for use, estimate energy impacts,
dO\F/)vn idle equioment 9 Power reduction effectiveness verify potential reductions in equipment 5 years
quip availability, assess impact on system

flexibilit
Stakeholders and Potential Roles in Project

Stakeholder Role
Hardware Suppliers Provide relevant equipment specifications and perform testing.
Data Center Operators Evaluate operational limits and tradeoffs and perform studies.
Academia Perform research and publish findings.
National Laboratories Develop protocols and support development efforts.

Government Provide targeted funding opportunities to stimulate work and act as a convener to promote
cooperative scheduling and load management between grid operators and data center
operators.

Other Optimize scheduling for regional grid operators and utilities coordinate with data center
operators.
Required Resources Cross-Collaboration with Other Working Groups
Power system renewable energy/carbon intensity data. Education & Workforce Development: Fund studies at
universities; catalyze improved energy efficiency

Operational data for workload flexibility characteristics coursework.

3.1.2.2 Advanced Thermal Management Technologies

Despite the significant advances made in cooling data centers, computing also takes place in
non-data-center environments. Where improvements in cooling do not apply at the facility level,
more modular, compact, or chip-level cooling strategies may be needed. In particular, the
development of 2.5D and 3D chips will require direct on-chip cooling strategies that exceed the
capacity of traditional, forced air cooling methods that are commonly applied today.

As the power density of electronic devices increases, conventional cooling methods become
insufficient. For instance, while larger computer systems typically use heatsinks with forced air,
and mobile and loT devices rely on passive heatsinks, these approaches fall short for 3D IC
devices. HPC devices are expected to exhibit power densities up to 1,000 W/cm?, with stacked
logic or memory tiers at 100 W/cm?, and loT devices at 10 W/cm? (Li and Goyal 2017).
Moreover, hot spot densities can reach 2—-4x the average power density, significantly increasing
the risk of performance degradation and device failure due to overheating (IEEE HIR 2021).
Current forced air system, even when combined with vapor chambers, is limited as it can only
cool up to 85 W/cm?, which is inadequate for the cooling demands of 3D ICs. Therefore, novel
cooling methods are needed for the next generation of 3D IC cooling.

Planar 2D systems have utilized a software technique to help mitigate extreme temperatures.
Dynamic thermal management (DTM) transitions a task to a cooler core when a critical
temperature on an existing core is reached. While this technique is important to prevent
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overheating, it is unlikely to work well in a 3D IC with a smaller footprint and stacked
technologies, which have higher power density (Li and Goyal 2017). This is also a challenge on
mobile devices or other applications with passive cooling. For smartphones, the processor case
temperature can reach near 43°C, or 18°C above the ambient temperature near the processor
(IEEE HIR 2021).

Savings potential for advanced thermal management techniques

Literature sources report investigating methods utilizing liquid or mixed-phase cooling as a
potential advanced thermal management strategy. Compared to air cooling (50-85 W/cm?),
these methods can range from achieving 100 W/cm? for dielectric immersion cooling, 562
W/cm? for water immersion cooling, and to 1,020 W/cm? for two-phase microchannels.
Alternative cool plates can also be used for alleviating heat fluxes of 250 W/cm?2. These
technologies are shown in

Table 68 with their performance compared to conventional air technologies and their impact
factor over air cooling. Exact energy impacts are difficult to place as only water-cooled heat
sinks were found to project data-center energy savings by 20x. A comprehensive study of the
energy impact of these technologies is recommended.

Table 68. Various Device and Package-Level Cooling Technologies, and Their Impact over Conventional
Technologies.

All technologies except for direct liquid immersion utilize thermal interface materials (TIMs), although it is not a
requirement to forego them. Included is also the timeline to reach TRL 6.

Baseline Commercial e
Technology Specified Technology Energy Benchmark Benchmark Impact Timeline
g Performance Product S G )
Performance
Diamond copper
nanocomposite heat 900 W/m-K Cu Heat Sink 389 W/m-K 23 1-3
sink
250 50 Wicm? 3.4-5
Water °S°.°'|fd Heat ™4 23% Chip Fgrcelq Al 50% of Chip 1-3
n Power for ooling power for 217
Cooling cooling
Device and Direct liquid cooling
Package (water immersion .
Level Cooling | cooling, electrically 562 W/cm? F(c):rgglciinAlr 50 W/cm? 11.24 5-10
Technologies | isolated by dielectric, 9
no TIMs)
Immersion Cooling
Single Phase (micro 790 W/em? Forced Air 50 W/cm? 15.8 5-10
channels in the Cooling ’
device)
Immersion Cooling
Dual Phase (micro 1.020 W/cm? Forced Air 50 W/cm? 20.4 5-10
channels in the ’ Cooling ’
device)

In addition to the technologies characterized, many additional technologies exist that have the
potential to be used in microelectronics circuit cooling applications, though further
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characterization is needed to quantify their potential. These technologies include thermoelectric
devices, heat pipes, and magnetocaloric cooling. It is recommended that version 2.0 of the
EES2 roadmap further investigate the suitability of different thermal management approaches at
different computing scales and in different contexts, including distributed and scalable solutions
for non-data-center facilities.

Challenges and solution pathways for advanced thermal management technologies
Infrastructure adoption and standardization

The first paper using microchannels in a device for cooling purposes was published in 1981, but
the process was never commercialized due to existing infrastructure limitations at the time
(Tuckerman and Pease 1981; Refai-Ahmed et al. 2020). Forced air cooling is reaching its limits
and the next-generation data centers employing 3D ICs are likely to leverage water-cooled heat
sinks or microchannels. This shift will require new pumps, rack layouts, liquid heat exchangers,
and other components. In addition, new standards will be needed for the liquid cooling systems,
such as flow rates, pressure drops, pump sizes, line lengths, fin thickness, and channel width
for microfluidics, as is currently done with room air conditioners for data centers (AHRI 1360,
OCP, ALSI 127, etc.).

Compatibility with chip power and interconnects

Microfluidic channels on the back side of the Si die will have significant integration challenges
with chip designs that primarily use backside power. Utilizing microchannels as a TIM will
require precise placement of the electrical vias between the fluidic channels (Li and Goyal 2017;
Kandlikar 2014). Future designs must balance cooling and power distribution, especially for 3D
circuit configurations. Packaging EDA CAD tools must be adapted to evaluate designs that
configure these new cooling technologies alongside power distribution and interconnect layouts.

Reliability concerns and serviceability

As these advanced thermal management technologies have not yet been implemented broadly,
the potential exists for multiple unknown failure modes and longevity concerns. Issues may
include leakage of water or other liquids and the resulting impacts on devices, dielectric coating
durability, and boiling of liquid coolants in contact with the devices. Failure mode and effects
analysis (FMEA) should be conducted on these approaches to create mitigation plans. In
addition, new components should be serviceable. If there is an equipment failure, or
preventative maintenance is required, procedures must be established for the removal water or
other coolants as needed to safely remove or replace components.

Distributed and scalable solutions for cooling computer equipment in non-data-center facilities

High-efficiency cooling solutions can be applied to various facilities that commonly contain
significant computing infrastructure, though computation is not the primary facility purpose (e.g.,
healthcare facilities, universities, scientific computing centers, and logistics, shipping, and
tracking companies). Since computing is often subordinate to other business functions in these
environments, investments in computing energy efficiency may be lacking compared to industry-
leading data centers. In these contexts, government incentives can promote the adoption of
high-efficiency computing and cooling equipment, but the potential effects of this approach have
yet to be quantified.
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Improving technical and commercial maturity for emerging cooling technologies

Many emerging cooling solutions require further investment in RDD&D before becoming
suitable for commercial use in computing facilities. Thermoelectric cooling approaches have the
potential to be integrated on-package using deposition processes similar to CMOS
microelectronics. However, manufacturing challenges still exist for superlattice and tunneling
thermoelectric devices, which may prove to be useful approaches for achieving higher thermal-
to-electrical conversion efficiencies. Similarly, heat pipes may be useful for heat removal
applications in CNT-based computing architectures. However, the technological development of
CNT-based transistors and heat pipes will need to move in parallel, and co-design will be
needed, to allow for convergence.

Action plan for advanced thermal management technologies
Table 69 Action Plan for Advanced Thermal Management Technologies.

Scope

Technology for Energy Efficiency Effect System level Cooling/Full Chip cooling

. Air cooling

. Liquid/immersion cooling (including single-/two-phase direct liquid cooling and single-/two-
phase immersion cooling)

. Microfluidic cooling (single- and two-phase)
Technologies of Interest: e Interposer cooling technologies

. Heat exchangers (for liquids cooling back down)
. Thermoelectric and magnetocaloric cooling

. Heat pipes

. Thermal distribution in PCBs.

. Server thermal design power (TDP).

*  Rackdensity (increasing server density). e Integrate thermal distribution material in PCB layers for normalized temperature across
. Thermal hot spots . assembly. These materials can be “free” (e.g., copper floods) or additive (e.g., carbon
layers).
. Non-uniform surfaces across multi dies for yers)
cooling. . Transition from air to liquid by education, economics, and adaptation of the current
infrastructure.

. Data center sustainability by increasing facility
water temperature (deal with hot air and liquid | e Further decrease system thermal resistance through advanced liquid cooling techniques,

temperature). through standardization and scaling up systems and reliability.
. Greater reliability of function during heat . Decrease thermal resistance for removing backside heat and alleviating thermal
waves (e.g., not needing to decrease data use bottlenecks (i.e., isolation of thermal crosstalk).

due to heat).
) . Remove heat from the liquid to ensure further cooling of computing components (possibly

e High-efficiency cooling solutions for all could use waste heat recovery).
compute contexts, including non-data-center
environments.

. Lower TRL cooling technologies require R&D . Utilize grants, prize competitions, and SBIR programs to drive demonstration and
investment. More mature cooling technologies deployment of cooling solutions that need to be de-risked.

may still require de-risking. Technologies that
have been demonstrated at commercial scale

. Direct targeted research funding toward required R&D efforts.

. Consider use of lending programs, tax incentives, and rebates to encourage the adoption of
mature cooling programs in non-data-center contexts.

within data centers may still require
adaptation for use in other compute contexts. . Measure and publish the results of each effort, to help inform the industry.
Reliability analysis is required when
incorporating novel cooling strategies into
device packaging.

Major Tasks/Milestones Metrics Targets Timeline
Address thermal management for PCBs and Thermal distribution . .
; PCB design, materials and assembly 1 year
assemblies across assembly
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Stakeholder

) Number of funded
Develop R&D eff(_)rts for the_vanous low-TRL projects, research projects 50% industry/government cost share 1-5 years
cooling strategies.
awarded
Increase from baseline; utilization of
Promote adoption for higher TRL solutions. Technology adoption rate SBIRs and other relevant government 1-3 years
programs
star?deaﬂrrtljidcg%?nf:r\:ilties Flow rates, pressure drops, mounting
Achieve Standardization : and unit configurations, pump sizes, line 3-7 years
(e.g., Asherie, ALSI 127, lenaths. etc
ANSI 1360, OCP) gths, etc.
ex I&:S;ag)elici?gemi'BF Similar device longevity failure rates to
Investigate reliability concerns/serviceability P o eratio?]s a,n d ’ conventional air-cooled technologies, 3-7 years
P reduced O&M costs
maintenance costs
Lmnﬂgg?ﬁ]m?ggﬁn?f::ﬁ Microfluidic heat sinks, Immersion
Promote infrastructure adoption g 9 q y cooling, Single- and dual-phase device 8-12 years
infrastructure upgrades for microchannels
liquid-based coolants
Drive adoption through OpEx (CapEx high for TCO reduction through Data center builders and planners, data Onaoi
o L b ’ : ngoing
new liquid-cooled data center) significant energy savings center providers, chip producers

Role

Product Manufacturers/Suppliers

Develop cooling technologies and commercialize solutions.

End Users/OEMs

Energy-efficient system integration, adoption, and implementation; Define cooling
requirements, verify solutions, participate in demonstrations.

Academia

Design techniques to enable thermal management improvements, such as innovations in
new cooling solutions, interface design, coolants, materials (e.g., interposer, heat
exchanger), floods, etc.

National Laboratories

Conduct R&D; Develop solutions; Provide testing capabilities and partnerships to enable
technology validation and adoption.

Government

scaling.

reliability, and sustainability.

designs.

. Access to HPC system testing facilities. Potentially use DOE or USG-
owned facilities as demonstration sites for the technologies developed.

. Energy efficiency, reliability, and sustainability standards. .

. Facilities for testing and validation of solutions’ energy efficiency,

. Manufacturing skillset related to scale up, ensuring workforce’s ability to
manufacture these technologies at scale. Those who service data
centers need to be educated on air-cooled data centers and liquid
cooling. Possibly a need for thermal engineers to create effective cooling .

. Education is required for end users (moving from air to liquid): why it
makes sense for the business, OpEx savings, etc.

Set standards and provide resources and incentives for industry’s transition toward higher
energy efficiency; government research agencies (like the National Science Foundation and
DOE'’s Office of Science) may be involved in funding R&D for lower TRL cooling solutions.

Required Resources Cross Collaboration Needs of Working Groups

. Various opportunities for funding, including for manufacturing up-

. Materials and Devices: Explore PCB construction
issues for thermal distribution. Compatibility with
liquid cooling. Chip design materials compatibility with
exposure to liquid.

Sustainability: Determine metrics met and
water/greenhouse gas footprints.

. Metrology and Benchmarking: Develop system-level
models to quantify impact. Requirements: Can you
accommodate 25°C water, 45°C water? Thermal
requirements on heat rejection side.

Circuits and Architectures: Design for thermal
crosstalk (3D stacking, specifically), where the heat is
put in and removed. Microfluidics impact architecture
design. Yield at the wafer.

3.1.2.3 Enhancing Modeling, Simulation, and Co-design Capabilities

Modeling and simulation tools will need to evolve to enable the next generation of energy-
efficient computing devices and facilities. Current tools do not allow for end-to-end modeling of
energy use in data centers and computing facilities. This capability would allow for an improved

DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE

243




Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

understanding of the relationship between device-level operations and overall facility energy
use. Additionally, integrated, multi-physics co-design tools are needed to evaluate and optimize
design tradeoffs involving thermal management and power delivery. Lastly, modeling and
simulation tools will need extended features that enable analyses related to system reliability
and economics.

Challenges and solution pathways for enhancing modeling, simulation, and co-design
capabilities

End-to-end energy modeling

Simulation environments exist for modeling energy use within different scales (microelectronics
level versus data center facility level), but existing tools do not provide end-to-end modeling
capabilities across scales. Furthermore, due to a lack of end-to-end simulation capability, it is
difficult to predict the way design tradeoffs at the circuit and architecture level will impact
aggregate energy use at the facility level.

Due to the complexity and scale of modern computing infrastructure, end-to-end energy use
modeling efforts suffer from long simulation times unless significant computational resources
are dedicated to the task. These resources, however, are often unavailable to design teams.
One potential pathway for resolving this modeling challenge would involve the use of high-
performance computing (HPC) resources to generate reduced order models for energy
performance. Complex, high-fidelity simulations can be created using HPC, providing realistic
energy impact estimates over significant scales. Generating reduced order models would allow
the insights gained using supercomputers to be accessible later when using lower capability,
personal computer workstations. Using this approach, targeted R&D projects could result in
tools made more widely available for design purposes.

Integrated, multi-physics co-design tools

Optimizing the design of power delivery to on-chip devices and ensuring proper removal of heat
generated will require co-design in emerging circuit architectures like chip stacking and
2.5D/3D. This co-design process requires detailed simulations conducted in multiple domains
(mechanical, thermal, electrical, magnetic, fluid, etc.). Tradeoffs must be evaluated across these
domains. At present, software packages have been designed for analysis in each domain, and
limited cross-domain analysis capabilities exist. In the future, methods may be needed for tightly
coupling simulation packages from different vendors, allowing them to time-synchronize, or pass
information between solvers (co-simulation). Alternatively, new simulation tools with expanded
features may need to be developed. A dedicated effort may be needed to evaluate the
capabilities and shortcomings of current simulation tools with respect to design for emerging
architectures. Further recommendations for new features and capabilities can be made, based
on that assessment.

Extending simulation tools to analyze reliability and economics

Multi-scale multi-domain co-design tools could also be used to support techno-economic
analysis and reliability assessment for complex microelectronic systems. Often, a full bill of
materials (BOM) is needed to derive reliability and lifetime information for a computing system.
However, due to complexity, a full BOM is not often modeled in software. Large-scale
simulations that include a full detailing of components and subsystems could be used to
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evaluate failure modes and mitigations and to analyze the cost impacts of design decisions.
These analyses are now performed indirectly by industry experts, but in the future, these
insights could be made available as extensions of simulation capabilities.

Action plan for enhancing modeling, simulation, and co-design capabilities

Table 70. Action Plan for Enhancing Modeling, Simulation, and Co-Design Capabilities.

Technology for Energy Develop multi-scale, single-framework, co-design tools for optimizing circuit design, power
Efficiency delivery, thermal performance, reliability, and economics.

. Advanced modeling and simulation

. High performance computing and reduced order modeling

Technologies of Interest:
al . Multi-domain physics-based modeling

. Reliability analysis, cost optimization, and energy consumption modeling

Challenges Addressed Solution Pathways

. Immense fragmentation in engineering analysis software . Improving integration between software packages through
development. design, testing, and standardization.
. End-to-end (from device to facility) visibility regarding energy . Utilizing HPC and ROMs to analyze energy consumption
consumption within data centers. across scales.
. Lack of clarity regarding limitations in sharing data between . Extending the features of existing software programs
commonly used commercial software packages. through additional code development.
Major Tasks/Milestones ‘ Metrics Targets Timeline
Baselining current use of design All market-leading software packages
software and limitations regarding Representation, accuracy characterized; limitations accurately 1-2 years
data sharing and collaboration depicted.
Development of tools_and Usefulness, reception by Broad industry acceptance and high
methods for enhancing f N 3-5 years
S . industry utilization
collaboration in design
Testing and validation of co- Model accuracy, simulation Cross-domain optimization, global
) . : S - 5-7 years
simulation approaches time, insightfulness energy use reductions
R&D projects leveraging HPC Development of ROMs that can be
and ROMs for end-to-end energy Model availability and utility reused for analyzing different facilities 2-5 years
modeling with different hardware configurations
. Development of models that provide
Development projects focused on . . - . ; ; .
A . . Model integration, utility useful insights for informing design 1-4 years
reliability and economic modeling choices
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Stakeholders and Potential Roles in Project

Stakeholder Role
Software Vendors Coope.r.a.te in the development of tools for extending capabilities, and in creating co-simulation
capabilities.
End Users/OEMs Define high-priority technical and economic metrics to guide development efforts.
Academia Conduct R&D to find relevant solutions for the challenges identified.
National Laboratories Work with industry to scale and customize solutions.
Government Convene stakeholders, fund R&D, drive progress.
Required Resources Cross Collaboration Needs of Working Groups
. HPC resources at DOE national labs for developing high . Metrology and Benchmarking: Evaluate baseline end-
speed, highly granular analysis tools and reduced order to-end energy performance, assess software
models. capabilities.
. A pre-competitive consortium for developing software . Algorithms and Software: Support in optimizing the
extensions that benefit all vendors. software tools developed as a result of this effort.

3.1.3 PACE Honorable Mentions

The following energy reduction approaches were explored by the PACE working group but did
not result in the development of action plans.

3.1.3.1 Electricity Supply Innovations

This category focuses on methods to reduce the carbon intensity and emissions associated with
power data centers. Technologies options and strategies include:

¢ Shifting power demand to align with the availability of low-carbon power supplies:
Shifting power demand would involve changing the times at which computational loads are
executed (job scheduling) in response to signals provided by the local electric utility. This
can be achieved by incorporating emissions implications into the optimization routines used
in job scheduling algorithms for data centers. However, data center workloads are often
driven by customer demands, and there are practical limits concerning the extent to which
loads can be temporally shifted.

o Utilizing energy storage to optimize low-carbon power delivery to data centers: During
times at which demand cannot be shifted, energy storage may be utilized to minimize the
environmental impact of power delivery. This energy-optimization process works by storing
energy from low-carbon and carbon-free sources when available (e.g., storing solar energy
during peak production periods), and then dispatching the stored energy during times of
high demand that cannot be time-shifted. While this energy arbitrage approach has been
explored in many industries, data centers are particularly suited since they already have
onsite energy storage assets. Ensuring that battery capacities remain sufficiently reserved is
critical to assure that data center reliability does not suffer in exchange for decarbonization.
The process of utilizing energy storage is a facility-specific optimization, design, and control
challenge.
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e Dynamically switching to low-carbon, on-site fuel sources: Hydrogen fuel represents a
high potential energy source for data centers due to its ability to replace both batteries and
diesel generators. While diesel generators are typically kept onsite at data center facilities
for use in the event of utility power outages, hydrogen fuel cells represent a carbon-free
alternative. Hydrogen production can also be used to capture excess on-peak renewable
energy, which can be dispatched (instead of battery energy storage) during periods of hard-
to-shift computing demand. Additionally, this on-peak renewable energy can also be
dispatched during times when local electric power utilities are unable to supply low-carbon
electricity. Due to the many potential value propositions offered by hydrogen, developmental
efforts are underway by industry and research institutions.

¢ Producing on-site renewable generation: The use of solar PV has been explored for data
centers to smooth intermittencies and to reduce power quality impacts on data centers.
However, data center power densities continue to increase to the point where onsite
(rooftop) PV generation has the potential to provide only a small fraction of the energy
needed in an enterprise data center. Countries like Ireland are experiencing unprecedented
growth in data center developments, in a region with significant plans for expansion of
offshore wind generation. Similarly, data centers have been built in proximity to hydroelectric
generation assets to take advantage of lower energy prices and minimize environmental
impact. Market drivers have incentivized the exploration of onsite renewables for data
centers, and new approaches continue to be explored by industry.

3.1.3.2 Data Center Power Use Improvements

Power distribution architecture changes within data centers
As previously mentioned, the migration to higher voltage levels and the use of DC
distribution have largely addressed the efficiency gains possible in these areas.

Data center power delivery equipment efficiency improvements

The introduction of wide bandgap semiconductor devices has created higher-efficiency
power delivery equipment for data centers. The introduction of these devices has been
coupled with advanced monitoring and control systems that have helped to maximize energy
use in modern data centers.

Reducing auxiliary data center power use

Approaches include the use of optimized cooling strategies for data centers and high-
efficiency cooling equipment. These approaches have been well-integrated into modern data
centers, as evidenced by the significant improvements in PUE over the last two decades.

3.1.3.3 On-Chip/On-Package Power Management

Like power supply reduction techniques used at the server level, approaches exist for reducing
on-chip power consumption during times when processors are not actively in use. Dynamic
voltage and frequency scaling are two techniques commonly employed by chip developers for
reducing idle power consumption from processors. These techniques are routinely employed in
modern chip design.

Additional approaches discussed by the PACE working group include ultra-low voltage power
delivery and sub/near threshold voltage delivery.
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3.1.3.4 Architecture-Specific Power Delivery Innovations

Moving forward, novel device architectures will require integrated design of circuits, cooling, and
power delivery mechanisms. Optimizing power delivery approaches for each architecture
represents the best path forward. Unique approaches are needed to address power delivery for
3D/chip-stacked/chiplet architectures, photonic integrated circuits, and CNT-based solutions.

As this is essentially an architecture topic, it is recommended that future EES2 roadmap
development efforts include power delivery and thermal management as topics within broader
architecture discussions.

3.1.4 Conclusion for Power and Control Electronics

Power and Control Electronics (PACE) is one of the critical enablers for efficient compute stacks
across varied applications. This chapter emphasizes the necessity of advancing power
electronics strategies to handle the increasing power demands and heat densities that
accompany the next-generation computing architectures.

Key areas such as eliminating low-power modes in idle equipment and shifting compute loads to
more energy-efficient or renewable-powered data centers are highlighted as immediate
strategies to reduce power usage significantly. The chapter also stresses the importance of
leveraging emerging thermal management technologies that allow for higher power densities in
advanced packaging such as 3D integrated circuits.

The roadmap also points to the need for development and standardization of advanced tools
and methodologies to assess and quantify the energy impacts at various scales—from device-
level to data-center scale. These tools are essential for enabling resource-aware compute
scheduling and optimizing thermal management strategies within data centers.

Overall, to align with rapid advancements in computing technology and the escalating pace of
environmental concerns, it is imperative to accelerate the deployment of these PACE
technologies in high energy impact areas like data centers. This includes investing in R&D to
advance cooling technologies, enhancing the functionality of power delivery systems, and
developing robust frameworks for continuous performance assessment and improvement.
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3.2 Manufacturing Energy Efficiency and Sustainability (MEES)

The growth and further development of artificial intelligence/machine learning (Al/ML), Industry
4.0, and the Internet of Things (loT) will increase data analysis, communication, and
semiconductor component production (Schume 2020; McKinsey & Company 2022b). With the
increased use of microelectronics and their associated energy costs being covered by the
compute stacks chapter, this section will now focus on the energy efficiency, resource intensity,
and climate impacts of manufacturing.

There is an expectation that a new, faster, and more efficient electronic device will be released
every one to two years. New devices require new silicon, new process design kits (PDKs),
and—most importantly to this roadmap’s scope—more steps per technology node. This
resulting increase in steps ultimately results in significantly more energy costs per node.
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Figure 66. Manufacturing energy costs per wafer for different technology nodes. MOL = middle of line; FEOL =
front end of line; BEOL = back end of line; EUV = extreme ultraviolet. Source: Bardon and Parvais 2023

Figure 66 illustrates the increase in manufacturing energy required per wafer, with significant
increases in back end of line (BEOL) energy costs (Bardon and Parvais 2023). Transitioning
from the 3nm to the 2nm node—while yielding a 15% performance improvement and a 30%
reduction in power consumption at equivalent transistor counts—incurs a significant production
energy increase of approximately 200kWh per wafer. For example, TSMC’s nanosheet-based
2nm node, despite its advancements, only enhances chip density by about 1.1X compared to
the 3nm node. The substantial manufacturing energy demands potentially outweigh the benefits
of performance and power efficiency improvements in semiconductor technology advancements
(Shilov 2022). Energy consumption for leading semiconductor fabs is also increasing. TSMC
now consumes around 22,000 gigawatt-hours per year, a 2x energy increase over 5 years from
2017 to 2022 (Statista 2023a); Intel consumes 10.9 gigawatt-hours per year, a 2x increase over
7 years from 2015 to 2022 (Statista 2023b). Current production volumes are already taxing
many grids, and projected increases in energy consumed during chip production are larger than
the energy currently used by most countries, including the U.S. (Knauss 2023). While a
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multitude of companies are working on increasing on-site renewable energy production or
promising to buy from renewable sources, this may not be an option at all locations.

Other resource and energy consequences emerge from the increase in microelectronics
production. For example, ss designs become more complex, the manufacturing process has
also become more resource intensive. Each new node requires an increase in the number of
lithography, etch, chemical mechanical polishing or planarization (CMP), and deposition steps.
These new steps similarly increase the number of wet process steps needed to clean the wafers
from residual chemistry on the surfaces and create better interfaces for the next step. Not only
does this increase the quantity of water used, but these wet process steps also increase the
need for intensive water recycling to remove waste impurities. While fabs recycle a lot of water
for reuse (Bassler 2022), this may not work at all locations or in water-stricken areas. In fact,
during a 2021 drought in Taiwan, fabs were forced to truck in water to maintain operations, even
with an 85%+ recycling rate (Mott 2021).

Along with increasing water use, these processes require more materials and produce more
waste gases. To meet the requirements of new technology nodes, an increased number of
chemical vapor deposition (CVD), lithography, and dry etch steps produce a variety of
fluorinated, high-GWP gases, such as NF3; and SFs. When generated, these fluoride-based
compounds exhibit a high vapor pressure, enabling them to be readily evacuated toward the
abatement system. However, even abatement systems with 95%+ efficiency still release
significant amounts of greenhouse gass into the atmosphere. The energy equivalent of the
greenhouse gass emitted due to the operational energy use of fabrication facilities will increase
unless offset by renewable energy sources or the implementation of alternative non-greenhouse
gas process gas.

Advanced technologies will continue to require more and more resources such as electricity and
water while producing more waste and greenhouse gas emissions. The Manufacturing Energy
Efficiency and Sustainability (MEES) working group focused on technologies and approaches
that can mitigate these aspects. Not all technologies that could potentially help manufacturing
sustainability are described here, and the technologies discussed were chosen based upon their
potential impacts as well as the expertise of the working group members.

Working group methodology

Sustainable production of microelectronics has clear alignment with the EES2 goals of energy
reduction and minimizing environmental impacts. Understanding that the next generation of
microelectronics will require more resources and produce more waste and greenhouse gass,
the MEES working group identified 26 technical areas across 4 different technology groups as
technologies worthy of investigation. Table 71 is a list of these technology areas along with
specific technologies in these areas that were discussed by the working group. Given the
available bandwidth and expertise of the working group members, only the bolded technologies
were chosen to be investigated. For the next iteration of the roadmap, additional technologies
will be explored.

Table 71. MEES Technology Groups and Specified Technologies.

Technical Group Specified Technology
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e Reduce energy consumption of lithography of EUV, and through adoption of
nanoimprint lithography

e Identification of high energy bottlenecks, device designs, and process
improvements

Alternative and optimized | ¢  Selective deposition and etch processes

processes for energy and

waste ° Bottom-up self-assembly for FEOL

e Reduce solvent usage

e  Minimize high-GWP (global warming potential) gases (e.g., SFe, NF3)
through new deposition/etch processes

e  Low-PFAS (per- and polyfluoroalkyl substances) materials

° Preliminary ideas: wall power, green equipment, water use

e Allow for purified compressed air instead of resource-intense gases such as
pure N2 or He when applicable

. . . e  Energy recovery of waste heat or other

Facilities considerations T

e Reduce air filtration to level needed

. Facility location optimization primarily in resource- and renewable-energy-
rich areas

e Additive manufacturing for improved equipment to reduce variations

e  Recycling of key waste streams, e.g., high-value metals from slurries
o  Water-optimized processes and recycling efforts; target net-zero or net-

positive use
. e  Green ener rocurement and/or on-site generation
Sustainable o = i / 2 o
manufacturing practices e  More efficient heating and cooling processes (facilities, tools)

¢ Improvement of abatement technologies to reduce GWP of byproduct
gases or capture for reuse

e Development of life cycle inventory (LCI) identifying energy and materials
footprint of advanced integrated circuits (Ics)

e  Design for reuse (labeling of components)

. e Incentives for original equipment manufacturers (OEMs) to recycle
E-waste avoidance ) s ) )
(including recycling) e  Design hardware for forward compatibility to avoid waste (e.g., chiplet

technologies)

e  Build for disassembly

Key takeaways
summarizes the most significant identified energy efficiency opportunities that can be achieved
through advances in Manufacturing Energy Efficiency and Sustainability (MEES).
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Table 72. Key Opportunities for Energy Efficiency and Sustainability in MEES.

e  Streamline energy usage by refining laser sources for DUV lithography
and implementing process gas recycling. Enhance photoresist

formulations to improve light sensitivity, reducing exposure time.
Light-based

Lithography e  Optimize plasma generation chamber designs and mirror technology

to maximize light utilization for EUV lithography. Improve the
efficiency of high-powered laser systems and their maintenance
processes through innovative system design.

e Eliminate the need for complex light sources and reduce the overall
energy footprint. For example, nanoimprint lithography has high
energy efficiency potential by leveraging its direct mechanical
patterning approach.

Imprint-based
Lithography

e  Develop compact abatement solutions with superior destruction and

removal efficiency to significantly lower greenhouse gas emissions in
Process Gas semiconductor manufacturing. Foster the adoption of alternative
Abatement process gases for cleaning, deposition, and etching that have lower
global warming potential (GWP).

Grand challenges
The main challenges for improving manufacturing energy efficiency and sustainability are:

¢ Improving energy efficiency of EUV lithography by seeking breakthroughs in equipment
design and process efficiencies.

¢ Optimizing nanoimprint lithography to compete with traditional photolithography
methods, with a focus on minimizing defects, scaling down in size, enhancing alignment
precision, and improving stamp lifetime.

¢ Adopting and creating compact, high-efficiency abatement systems that fit within the
spatial constraints of fabs, with higher destruction and removal efficiency and minimal
floor space requirements.

¢ Identifying and implementing lower-GWP gases for etching and cleaning that maintain
tool performance while reducing environmental impact.

e Establishing comprehensive energy metrics for each lithographic process, from DUV to
EUV, to ensure accurate assessment and benchmarking of energy consumption.

o Developing efficient recycling methods for process gases to curtail emissions and
operational costs in photolithography.

3.2.1 Lithography

Lithography, a central process in semiconductor manufacturing, transfers intricate circuit
patterns onto a silicon wafer. Since the inception of chip fabrication, lithography has undergone
significant transformations to accommodate the persistent demand for smaller, faster, and more
energy-efficient microelectronics.

Photolithography, which uses ultraviolet (UV) light to etch designs onto silicon wafers, is the
dominant pattern transfer technique. Wafers are first coated with a light-sensitive chemical
layer, known as a photoresist. Once applied, the wafer is exposed to UV light that has passed
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through a mask (a stencil containing the desired layer design). This UV light exposure causes
chemical changes in the photoresist, making the exposed area soluble or insoluble depending
on the type of resist used. Following exposure, the wafer undergoes a development process
where the soluble regions are washed away to create a precise replica of the mask pattern.
Historically, two wavelengths were generally employed: 248nm and 193nm. The 248nm
wavelength, used in deep ultraviolet (DUV) lithography, was used early on in photolithographic
technology and utilized KrF lasers to produce the desired UV light. As chip technology
advanced and there was a pressing need to pattern smaller features, the 193nm wavelength—
using ArF lasers—was adopted. Unfortunately, the 193nm lithography process typically
consumes more energy than the 248nm process due to the increased complexities in light-
source generation and the ancillary equipment required to manage and optimize the shorter
wavelength. In fact, energy consumption in the 193nm process can range from several to tens
of kWh per wafer depending on the specific photolithographic process, the equipment used, and
the design intricacy.

The relentless pursuit of miniaturization in the semiconductor industry has further driven the
transition toward extreme ultraviolet lithography. EUV lithography, utilizing a much shorter
wavelength of approximately 13.5nm, enables smaller, more precise pattern replication. But
generating EUV light requires high-power laser systems and specialized equipment, leading to a
substantial increase in energy consumption relative to traditional DUV processes.

As a result, the industry is actively researching energy-efficient solutions within EUV.
Additionally, alternative lithography methods—such as nanoimprint lithography, which physically
stamps patterns onto surfaces—are being explored as potential successors or complements to
EUV since they offer both precision and potentially improved energy profiles.

In this chapter, various lithography techniques are discussed alongside strategies to reduce the
energy footprints without compromising technology progression.

DUV lithography

DUV is the primary lithography technique for legacy nodes (10nm and above). As with all
lithography, generating the precise UV light requires careful control, stable environments, and
intricate machinery, all of which come at a substantial energy cost. Over the years, tool
suppliers have been optimizing the light production process. For example, by advancing
photoresist sensitivity and refining optics to reduce light scattering, exposure time has
decreased, which not only conserves energy per wafer but also accelerates the overall process.
Innovations in machinery, such as advanced cooling systems, have further reduced the energy
footprint of these lasers. Cymer, a leading manufacturer of DUV laser sources, was able to
develop a master oscillator (MO) chamber that helped reduce power consumption by ~15%.
Additionally, the shift to neon gas, which offers cost and supply advantages compared to
helium, was complemented by a new system adept at capturing, recycling, and supplying over
90% of the neon gas needed by ArF sources (Roman et al. 2017).

DUV lithography has also reached a resolution limit for its most advanced technique, ArF
immersion lithography, at around the 40nm to 20nm nodes. Beyond this limit, the resolution and
pattern fidelity deteriorate rapidly, making it challenging to produce reliable semiconductor
devices. The resolution is proportional to wavelength/numerical aperture, thus the fundamental
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limit is governed by the wavelength. To push beyond the 10nm limitation, EUV lithography with
a wavelength of 13.5nm has been developed and is currently being commercialized.

EUV lithography

Extreme ultraviolet lithography operates at a wavelength of approximately 13.5nm and can
pattern features down to 7nm and below. To generate light at this wavelength, plasma from tiny
droplets of molten tin is excited, which emits light within the EUV spectrum. However,
conventional optics cannot be used to manipulate EUV light due to its unique absorption
characteristics. Instead, EUV light is directed onto the silicon wafer using a series of specialized,
multi-layer coated mirrors. The same characteristic that makes EUV able to pattern tiny features
(i.e., wavelength) also makes it energy inefficient. Current top-down estimates of power outputs
and efficiencies for 13.5nm EUV technology compared to traditional immersion lithography are
provided in Table 73.

Table 73. Energy Consumption of EUV vs. DUV Lithography. Source: Kim 2009

90W output ArF immersion double

Metric 200W output EUV ,
patterning
Electrical power (kW) 532 49
Efficiency (%) 0.04% 0.18%
Ratio of input power/output 2,660 544.44

Even relative to double-patterning immersion lithography, the lower efficiency and resulting
higher input power (~5x) of EUV are evident. In addition to this top-down analysis, a bottom-up
evaluation based on bond energies further underscores the heightened energy usage of EUV.
Specifically, energy metrics for deposition, lithographic, and etch processes highlight that EUV
can require higher energy per bond compared to its 193nm DUV counterpart (Shankar 2023).
Table 74 shows that the deposition/growth and etch energetics are bound at the low end (2.1
eV) and high end (8.42 eV), which correspond to copper-metallic bond energy and copper-
tantalum bond energy, respectively. The total energy per bond varies between approximately 3x
and 5x for EUV compared to double patterning in DUV technology.

Table 74. Total Energy Per Bond for DUV vs. EUV Lithography. Source: Shankar 2023

Deposition/ . ) TOTAL Energy % for
Wavelength Process Flow Growth Litho Etch Litho Etch perBond (eV)  Lithography
Double )
193nm ! Min 2.1 6.41 2.1 6.41 21 19.12 67.05%
Patterning
193nm Double Max 8.42 6.41 8.42 6.41 8.42 38.08 33.67%
Patterning
Singl
13.5 nm 'ng’e Min 2.1 91.67 21 95.87 95.62%
Patterning
Singl
13.5 nm 'ng’e Max 8.42 91.67 = 8.42 108.51 84.48%
Patterning

Addressing the significant energy requirements of EUV lithography is paramount, especially as
semiconductor processes inch toward even smaller dimensions. The process of generating EUV
light is inherently energy intensive and the energy footprint spans from high-powered lasers to
the subsequent cooling and maintenance of the machinery. To address these concerns, EUV
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lithography manufacturers like ASML are continuously innovating chamber designs to optimize
plasma generation and advancing mirror technology to reduce light losses. See Figure 67 for
additional details regarding ASML’s roadmap for upcoming EUV technology.

Industry leaders and associated entities are actively pinpointing processes with significant
carbon footprints and strategizing how to diminish them (Ragnarsson et al. 2022). Such
approaches to curb energy expenditures in lithography/pattern transfer include, enhancing the
design of processing equipment for better efficiency, exploring alternative bottom-up processes
like directed self-assembly, and refining patterning techniques at nanoscale dimensions. Given
the higher energy requirements of EUV relative to traditional immersion lithography, it is
important that these energy efficiency efforts be extended to the design of the lithographic
processes and equipment.
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Figure 67. Roadmap of EUV lithography tool developed by ASML. Source: Jones 2022

Nanoimprint lithography

Nanoimprint lithography (NIL) is gaining momentum as an alternative to EUV lithography. At its
core, nanoimprint lithography operates much like a stamping process (see Figure 68): A mold
with the desired patterns is pressed into a resist layer placed on the substrate. This imprinting
process physically deforms the resist, replicating the mold’s patterns onto the substrate. Once
the imprint is made, residual layers are typically removed, followed by etching to transfer the
pattern into the substrate. NIL has demonstrated its ability to achieve features well below the
10nm scale and is currently being commercialized by tool providers such as Canon, positioning
it as a primary alternative for next-generation semiconductor devices.
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Figure 68. Photolithography vs. nanoimprint lithography processes. Source: Canon 2019

From an energy standpoint, NIL is significantly more energy efficient than EUV ilthography (see
Table 75). NIL sidesteps the need for complex light sources, such as those used in DUV and
EUV lithographies, as well as the associated energy-intensive processes for generating specific
wavelengths of light. Instead, NIL’s direct mechanical patterning approach substantially reduces
its energy footprint, making it a more eco-friendly option.

Table 75. Power Consumption of EUV vs. NIL Processes. Source: DNP 2023

Power Consumption of
Lithography Process
EUV Lithography 9.7 kWh/wafer

NIL 1.1 kWh/wafer

Process

However, like all innovative technologies, NIL faces its own set of challenges, including size
scaling, defect control, and imprint alignment. Among these, defect control remains the biggest
challenge. For example, the direct contact between the mold and resist can lead to
imperfections or damage that could affect device performance. NIL is currently being used in
memory, but Canon has recently announced that they are moving NIL into logic in order to
compete with ASML when it comes to precision (Mann 2023). If this comes to fruition, an
orders-of-magnitude decrease in energy consumption is possible. But size scaling remains
another issue. Currently, NIL masks and EUV masks are made through similar processes.
However, there is a nascent process that allows direct duplication of patterns down to Tnm-2nm
using NIL—but that template-making process is slow, possibly limiting NIL’s near-term
prospects for manufacturing critical components (Hua et al. 2004).

Given these considerations, the semiconductor industry is deliberating the best path forward for
nanoimprint lithography. While NIL may not completely replace optical lithography due to its
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unique challenges, it could very well be used in tandem with other methods. For example,
employing NIL for specific layers or processes where its benefits are most pronounced, while
also relying on traditional lithographic methods for others, which might offer an optimal blend of
precision, energy efficiency, and throughput. As the demand for smaller, more efficient devices
grows, integrating techniques like NIL alongside established processes can be key to reducing
the energy consumption of chip manufacturing.

3.2.2 Process Gas Abatement Systems

The growth of the microelectronics industry and the increased complexity and number of
production steps have resulted in an overall increase in greenhouse gas emissions. Fluorinated
gases, which can escape into the atmosphere, are commonly used for etch and chamber
cleaning processes. Table 76 presents common gases used in semiconductor processing and
their GWPs.

Table 76. GWPs and Atmospheric Lifetimes of Key Waste Gases. Source: Beu et al. 2019

Global Warming Atmospheric

Chemical

Potential Lifetime (Years)

CO2 1 20
CHsF 150 3

N20 310 120

CF4 6,500 50,000
C2oFe 9,200 10,000
CHF3 11,700 160

NFs 17,200 500

SFs 23,500 3,200

IMEC recently published a report looking at the sustainability of next-generation chip
manufacturing. Their findings showed that there are still significant emissions resulting from N0,
CHF3, SFe, NF3, and CF4, with the latter three representing 93% of wafer emissions. The report
also showed that emissions per wafer have increased by 2.7x from the 28nm node to the 3nm
node. Investigation into abatement systems is needed to effectively remove contaminants from
the production line since they can save ~40% of total emissions (excluding onsite power
generation) (McKinsey & Company 2022a).

The destruction or removal efficiency values reported in the Intergovernmental Panel on Climate
Change’s (IPCC) 2019 Electronics Industry Emissions report (Beu et al. 2019), alongside IMEC
and state-of-the-art values for multiple different gases, are shown in Table 77 (Ko et al. 2014;
Hur et al. 2016; Applied Materials 2023; Lee and Chen 2017). For the three gases that
contribute 93% of the process waste gases, there is an average of 93% removal according to
the IPCC. While this may seem very good, more can still be done to improve abatement
(Bardon et al. 2020). While these technologies can be improved significantly with the state of
the art, challenges remain to abatement technologies and process gases, which are discussed
below.
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Table 77. Destruction and Removal Efficiency Values for Key Process Gases. Source: Beu et al. 2019

U.S.
Destruction State of
Process and the Art Improvement
Gas Removal DRE Factor
Efficiency
(DRE)

CHsF 98% 90% 99% 101%
N20 60% 90% 98.7 165%
C2Fs 95% 90% 100% 105%
CF4 89% 90% 90%—95% 105%
CHF3 98% 90% 99% 101%

99.1%—
NF3 95% 95% 10002 105%
SFe 95% 90% 99% 104%

Challenges and Solution Pathways for Process Gas Abatement Systems

Compact Designs With Higher Destruction and Removal Efficiency

Fabs are designed with a subfloor to accommodate additional components to the tool set, which
can include pumps, power sources, gas generators, and abatement tools. Since there is limited
space available—especially for facilities producing older nodes where increases in floor space
are not possible—creation of small-footprint and little-to-no-floorspace abatement systems in
line before the pumps is needed. Additionally, the abatement systems need to have a higher
destruction and removal efficiency while maintaining a smaller footprint for effective greenhouse
gas removal. A one-size-fits-all approach may be difficult to address these challenges without
lifetime issues in the tools and parts. While technologies do exist that require no floorspace and
are smaller and more efficient than the IPCC-reported values, it may not be cost effective for all
smaller producers to upgrade. Providing financial assistance and/or loans for abatement
systems to reduce GHG impacts may support wider adoption.

Alternative process gases for cleaning, deposition, and etching

The use of NF3, SFg, and perfluorocarbons CHyF, occurs primarily in the etching of materials—
whether it be for structural or 3D components of films on the wafer, or removal of films from
chamber walls to ensure that the tool is performing within its specifications. Despite high
removal efficiency, significant gas emissions still occur. Solutions include using alternative
chemistries for cleaning atomic layer deposition (ALD) and chemical vapor deposition (CVD)
chambers or etching with lower global warming potential (GWP) gases like F, plasmas (Hwang
et al. 2007; Riva et al. 2009). Additionally, thermal reactivity processes involving metals, metal
oxides, and nitrides with agents like ozone, sulfuryl chloride, HF, and transfer ligands could be
adapted for chamber cleaning if sufficiently rapid (Partridge et al. 2023a; Partridge et al. 2023b;
Johnson et al. 2016). However, challenges remain: NF3; and SF¢’s inertness is hard to match
with more reactive chemicals like F2, HF, or SOCI;, requiring stringent handling precautions.
Moreover, many of these alternative methods are still in the research phase, posing significant
hurdles before industrial application is feasible.
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3.2.3 Conclusion for Manufacturing Energy Efficiency and Sustainability

Manufacturing Energy Efficiency & Sustainability (MEES) plays a vital role in enabling the EES2
roadmap by ensuring that semiconductor manufacturing processes align with modern energy
efficiency demands. As an enabler, MEES aims to advance techniques, standards, and
methodologies that will shape the next generation of sustainable manufacturing in the
semiconductor industry.

Core strategies highlighted include the adoption and efficiency improvement of light- and
imprint-based lithography techniques, which offer improved efficiency in the production of
advanced microelectronic components. Process gas abatement systems are essential to
mitigate emissions and environmental impacts during semiconductor fabrication, or ideally,
replace greenhouse gas-emitting process gases altogether with more environmentally friendly
alternatives.

MEES acts as a cornerstone for EES2's objectives by improving manufacturing throughput,
reducing environmental impact, and enabling the rapid scaling of energy-efficient semiconductor
technologies. Collaboration between industry leaders and researchers will ensure these
initiatives are accelerated, securing a more sustainable future for semiconductor manufacturing.
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3.3 Metrology and Benchmarking

Metrology plays a central role in the R&D and manufacturing of microelectronic devices and
comprised of a diverse array of tools, techniques, and analysis methods. In this roadmap,
“metrology” includes both inline, high-throughput measurements as well as off-line advanced
characterization techniques and everything in-between. As geometric scaling progressed, the
process tolerances and specifications became more stringent and the number and importance
of metrology steps increased, as did the measurement requirements (e.g., resolution and
measurement time). For instance, comparing the manufacturing processes of two generations
of microchips, one can observe a significant increase in the complexity and number of
metrology steps required. In manufacturing a chip with 14nm features—smaller and more
advanced than one with 65nm features—the number of metrology and inspection steps is four
times greater.

More recent advancements, such as 3D stacking and heterogeneous integration, push into the
vertical direction. While these innovations exhibit improved performance, energy efficiency, and
multifunctionality, they introduce a whole new set of metrology challenges and requirements:
minor discrepancies in alignment or defects can cascade through the layers, degrading the
system’s overall performance and efficiency; novel materials and/or device architectures may
require novel characterization techniques; and critical structures and interfaces may no longer
be accessible. While traditional approaches continue to provide value, they will not meet the
metrology needs for emerging energy efficient devices and systems. To enable the technologies
found within this roadmap, advancements in existing metrology techniques or development of
new ones—to meet these technologies’ specific requirements—are needed.

In conjunction, standardized energy performance measurements (i.e., benchmarking) are
needed to objectively evaluate the array of emerging technologies, including those proposed in
the roadmap. Benchmarks provide a foundational reference, allowing for the systematic
assessment of innovations against a consistent criterion. While each technology may have
attributes other than energy that make it suitable for a specific computing application, data from
benchmarking will nonetheless help prioritize and possibly downselect the technology options.

Working group methodology

The discussions in this working group were structured differently from the other working groups.
Given that innovations in metrology and benchmarking will not confer direct improvements in
energy efficiency, the group did not quantify energy efficiency impacts. Instead, the group
identified critical metrology and benchmarking approaches and discussed the desired future
state for each, summarized in Table 78. These approaches set the context for future
discussions of challenges and solution pathways for metrology and benchmarking group.

Key takeaways
Table 78 summarizes the most significant identified energy efficiency opportunities that can be
achieved through advances in metrology and benchmarking.

Table 78. Key Opportunities for Energy Efficiency in Metrology and Benchmarking.
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3D Metrology

Development of non-destructive interface metrology techniques that
are strongly connected to characterization and measurement data
models.

X-ray tomography to evaluate buried structures and interfaces, with
100nm resolution, large field of view, and with scan times of

Virtual Metrology

e seconds to minutes.
Thermal metrology to characterize interfacial thermal resistance and
gradients, as well as detect hot spots, with 0.1 milli-Kelvin resolution.
Development of more widely available techniques with fast feedback
. times, including those for composition, thickness, conformity, etc.

In-situ and In-

operando s 4 Process-specific measurements, such as those for RF plasma, to

Characterization for J J enable strict process control during fabrication.

Fabrication The integration of deposition tools with X-ray measurements to
ensure consistent depth and uniformity across the wafer.
Development of advanced metrology approaches that are inline,

) high-speed, and non-destructive to evaluate parameters of interest,
Metrology for High- e.g., wafer-scale etch and deposition uniformity.
Aspect-Ratio
P Multi-modal, multi-scale measurements to enable seamless

structures . ) o
integration of measurements and models for holistic
characterization.

. Integration of Al/ML with physics-based modeling for inline high-
Al/ML Assisted I volume manufacturing metrology.
Metrology and

While there are some instances of virtual metrology in high-volume
manufacturing, drive wider adoption across industry.

High-Throughput
Metrology

Coupling high-resolution characterization with high-throughput
metrology to improve overall speed, measurement capability, and
output of inline metrology techniques. For example, secondary ion
mass spectroscopy, which is being adopted as a primary pathway for
emerging technologies, can be coupled with an inline technique to
reduce offline characterization time.

Failure Analysis

Establishing advanced, real-time failure analysis platforms that
integrate multi-modal characterization techniques to swiftly identify
and understand failure mechanisms as they occur.

Focusing on the correlation of stressing mechanisms with observed
failures through the use of automated, synchronized multi-modal
analysis to enable proactive improvements in device design and
reliability.

Benchmarking

Establishment of a sustained benchmarking program for emerging
devices and systems to objectively evaluate energy efficiency and
performance.

Development of an end-to-end system-level model to holistically
evaluate how energy efficiency improvements at a single level affect
system-level efficiency.

Grand challenges

The following represent grand challenges, major resource needs, and key solution pathways

distilled from working group discussions:

o Discrepancy between expected and actual system performance: During chip
manufacturing, the use of simplified metrology structures in non-active areas often fails to
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accurately represent the more complex active regions where energy efficiency is critical.
This mismatch can lead to unforeseen performance outcomes in devices intended to
optimize energy use. Approaches to bridge the gap between expected and actual
performance are needed. Solutions may include developing more realistic or representative
test structures and providing more samples (without intellectual property [IP]) to metrologists
to develop better measurement and modeling capabilities.

e Buried structures/interfaces (3D metrology): The shifts toward 2.5D and 3D devices for
energy efficiency introduce layers and interfaces that cannot be easily evaluated. Multi-
chamber, multi-process tools are becoming more prevalent to ensure pristine interfaces, as
cleanliness is a major contributor to yield losses, resulting in less visibility to underlying
structures and interfaces. Traditional methods of evaluating buried structures involve offline
and/or destructive characterization, such as focused ion beam (FIB) milling, or slow imaging
techniques, such as X-ray tomography. 3D metrology/characterization techniques that are
inline or near-inline and non-destructive to minimize defect formation during the production
of these devices are needed.

o Thermal measurements: The complex structures of emerging energy efficient chip
architectures dramatically increase the thermal resistance between various layers and heat
sinks, especially for heterogeneously integrated devices. While thermal management is an
active area of research, developments in thermal metrology, especially for 3D
microelectronics, are lagging. While techniques exist—such as Raman scattering, frequency
domain thermo-reflectance (FDTR), and synchrotron photon analysis—improvements in
resolution, measurement depth, and the ability to measure heterogeneous materials and
interfaces are needed. In addition, as 3D technologies move into high-volume
manufacturing, thermal metrology (currently lab-scale) will need to move inline or near-
inline.

e Bringing advanced characterization techniques closer to the “line”: Advanced
characterization techniques, such as synchrotron X-ray and scanning tunneling electron
microscopy, are typically destructive, slow, and confined to the lab. However, these
techniques are invaluable because they provide high-resolution measurement data needed
for R&D that conventional metrology techniques cannot provide. As devices and systems
get more complex, measurement needs are bordering on those that can only be provided
through advanced characterization. Therefore, there is great interest in moving these
techniques closer to the “line”—making them non-destructive, faster, and automated.

e The following subsections were distilled from the synthesis of the proposed solution
pathways from the working group, each contributes to the advancement of energy efficient
devices, and is further discussed in detail:

e Enhanced metrology: Improving existing techniques or developing new techniques to meet
evolving measurement needs.

e AI/ML in metrology: Utilizing artificial intelligence/machine learning algorithms to refine and
further enhance metrology, making them more adaptive to ever-evolving measurement
needs.
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o Failure analysis (FA): Developing a holistic FA framework to identify and analyze potential
weak links and areas of concern within the device or system, paving the way for
improvements in design and functionality.

o More samples: Increasing the availability of samples for metrologists and tool developers,
while maintaining IP constraints.

e Benchmarking: Establishing standards at diverse levels, ranging from narrative frameworks
to system-level models. This process ensures a consistent trajectory toward achieving
optimal energy efficiency across the board.

3.3.1 Enhanced Metrology

Enhanced metrology refers to advanced metrology and characterization techniques that must
be developed to meet the measurement needs for emerging energy efficient devices and
systems. For instance, the N3XT computing concept (Aly et al. 2015), monolithically integrates
carbon nanotube field-effect transistors (CNTFETS), silicon field-effect transistors (FETs), 2D
materials for thermal management, and resistive random-access memory (RRAM) along with
other components on an energy efficient 3D chip. The complex metrology needs for such an
advanced configuration exceed what conventional metrology tools can accommodate, even at
the most advanced nodes.

As device become more advanced and smaller, traditional optical microscopy encounters
limitations, especially below the 2nm mark. At these scales, more invasive and destructive
techniques, such as transmission electron microscopy (TEM) or atom probe microscopy, are
often employed. The industry needs to develop non-destructive techniques that offer similar
spatial resolution and may benefit from leveraging Al to correlate data from destructive
methods.

Summarized below are key techniques and considerations for enhanced metrology to enable
the technologies in this roadmap.

Transmission electron microscopy

TEM is an offline characterization technique in which a beam of electrons is transmitted through
an ultra-thin sample, interacting with the specimen as it passes through. This interaction
produces a magnified image with atomic-scale resolution. It is particularly useful in
characterizing device interfaces and structures, crystal structures, and film thicknesses. It is also
used as a mechanism to validate measurements of inline tools, such as critical-dimension
scanning electron microscopes (CD-SEMs) and critical-dimension small-angle X-ray scattering
(CD-SAXS) (Vladar et al. 2014), and, in some instances, develop International System of Units
(SI) traceable standards (Oriji et al. 2016).

Advancing TEM for specialized measurements demands not only ultra-high resolution but also
precise sample preparation coupled with state-of-the-art electron detectors. Presently, TEM is a
very slow and destructive process, where the entire TEM process takes approximately 24 hours
with engineer oversight. The current pace of R&D related to this roadmap requires faster
turnaround with improved resolution.
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Al and ML can be leveraged to significantly reduce processing time. By incorporating these
technologies, full automation of the TEM process is possible, covering everything from data
acquisition to its nuanced interpretation. The introduction of faster detectors and sources with
smaller electron dose are anticipated to further shorten processing time. Concurrently,
innovations in monochromators and optimizing energy dispersion of the electron beam can
improve resolution.

X-ray tomography for 3D stacking and heterogenous integration

X-ray tomography provides a non-destructive method of evaluating hidden interfaces and
structures. It is commonly used in failure analysis of packaged devices. It works by generating
cross-sectional slices of a 3D structure and reconstructing them to form a 3D image. The push
toward advanced packaging and heterogeneous integration (See Chapter 2.3)makes this
technique uniquely positioned to support non-destructive evaluation of hidden interfaces and
structures. Moreover, with the trend toward multi-step/multi-chamber tools to complete entire
process modules, this technique can be further adapted to wafer fabrication to meet metrology
needs.

On top of the advancement of X-ray tomography method, high-resolution X-ray tomography for
device research is typically confined to large, accelerator-based synchrotron X-ray sources,
which makes it not easily accessible to researchers. The development of compact, affordable X-
ray sources is needed to reduce the acquisition time and increase accessibility and the number
of high-resolution X-ray sources. While X-ray tomography of package- and board-level devices
have lower resolution requirements, the availability of compact X-ray sources will still provide
significant benefits. Given the complexity of leading-edge heterogeneous integration, integrating
board-level electrical testing with 3D, non-destructive mapping techniques becomes essential.

Thermal transport characterization and mapping

Thermal transport characterization and mapping have become increasingly important as 3D
heterogeneous devices grapple with heat management challenges. As these devices integrate
materials and layers with different functionalities, they often experience uneven thermal
gradients, leading to potential performance degradation or even device failure. The
development of innovative techniques and metrology tools for thermal characterization can
provide insight into these thermal behaviors, facilitating better design and management
strategies. Emerging techniques include nitrogen-vacancy (NV) magnetometers and Raman
spectroscopy. NV magnetometers, which leverage the quantum properties of defect centers in
diamonds, offer high-resolution thermal mapping by sensing temperature-dependent shifts in
their luminescence (Kuwahata et al. 2020). Alternately, Raman spectroscopy, which measures
the vibrational modes of molecules, can be employed to determine temperature changes based
on shifts in peak frequencies (Yue, Zhang, and Wang 2011). Both these techniques not only
provide a non-invasive approach to thermal characterization but also allow for real-time
monitoring. Techniques such as these can enable more resilient designs or integration schemes
by providing a deeper understanding of thermal flows in 3D structures.

Enhanced metrology is essential given the rising complexity of energy efficient devices. The
increasing prevalence of heterogeneously integrated devices demand automated measurement
that can offer superior characterization and faster rates. Modeling is key to driving these
developments forward, ensuring precision and repeatability in measurement as well as analysis.
Underpinning these innovations is the availability of samples. Representative test samples and
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structures are needed to develop and validate enhanced metrology techniques (further

discussion is provided in a separate section below).

Action plan for enhanced metrology technologies

Table 79. Action Plan for Enhanced Metrology Technologies.

Metrology and Benchmarking
Approach

Enhanced metrology

Technologies of Interest:

3D structures.

standard items.

changes.

Major Tasks/Milestones

Transmission electron

Technologies with complex 3D structures, integration schemes, inaccessible features, and
non-standard materials. Technologies requiring in-situ, dynamic, automated measurements
with high spatial resolution and multiple measurement modalities.

Metrology Challenges Addressed

. Inability to evaluate properties at inaccessible points within

. Inaccuracy of material and interface properties for non-

. Lack of real-time or near-real-time understanding of interface

. Avoid excessive measurements, understanding process
dependency to capture only what’s necessary.

Metrics

Critical dimension (CD) and

Proposed Solution Pathways

. Implement non-destructive, deep-penetration metrology

with compositional contrast.

. Enhance high-spatial-resolution measurements, which

may be destructive.

. Increase usage of high-speed X-ray tomography at low

intensities.

. Integrate coupled measurement modalities to provide a

holistic view.
Targets

Near-term: 2 hour; mid-term: 1 hour;

Timeline (years)

characterization and mapping

microscopy composition measurements long-term: 1 hour (fully automated) el
. . Identify samples and structures that
Develop test samples and Identify suitable samples and don't reveal IP but help advance novel >
standards structures
metrology
Near-term: correlated magnitudes with
Tomog!"aphy Al RS ©0) sl A baseline CDs; mid-term: 20% error 1-3
scattering departures - . .
with respect to baseline offline
Development of compact X- 100x reduction in acquisition time for
p P Brightness/energy SAXS and tomography compared to 5-15
ray sources
current synchrotron benchmarks
Integrated board-level . . .
electrical testing with 3D Spatial resolution, throughput Demonstratlon i SiETe e o HEE 8
. testing tools
mapping
Thermal transport Improved spatial resolution Timeline when needed: soon Within 1

TEM or atom probe
microscopy (destructive).
(Optical microscopy is limited

Stakeholder

Non-destructive method with
spatial resolution

Far end (if doable at all)

Stakeholders and Potential Roles in Project

Role

Long-term goal, if

achievable

below 2nm.i

Product Manufacturers/Suppliers

. Supply critical samples and offer comprehensive details on key product specifications.

End Users/OEMs

. Spearhead the design, production, and optimization of hardware components and systems.

Academia

. Innovate and advance research methodologies, harness Al capabilities, and foster
collaborative integrations with industry stakeholders.

National Laboratories

. Undertake specialized research and development projects, often overlapping with

academia, to push the boundaries of current knowledge and technology.

Government

. Facilitate research and industry growth by allocating strategic funding, providing
programmatic oversight, and fostering public-private partnerships.

Required Resources

U.S. DEPARTMENT OF ENERGY

Cross Collaboration Needs of Working Groups
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. High-performance computing (HPC) access for training large-
scale models e All working groups are needed to develop requirements
related to each technology to ensure that the solutions
®  More beamlines and synchrotrons are practically deployable and the models accurately
e Time, funding, and experts characterize those parameters.

3.3.2 Artificial Intelligence/Machine Learning in Metrology

Artificial intelligence (Al) and machine learning (ML), with their predictive capabilities and data-
driven approach, offer potentially transformative opportunities to metrology. Traditional
metrology primarily relies on explicit rule-based systems and manual data analysis and
intervention, often rendering the processes time-consuming and occasionally susceptible to
operator errors. On the other hand, Al/ML uses data to recognize patterns and detect
anomalies, and, in some cases, automatically correct processes. The advantage lies in Al/ML’s
ability to process and analyze large datasets rapidly, enabling real-time feedback and
adjustments, aiding the development of energy efficient devices. However, output from Al/ML is
only as good as its input. If these models are working off incomplete or low-quality datasets, its
results will be unreliable.

In practice, the introduction of Al/ML into fabs has been gradual. Its current uses are primarily
confined to enhancing wafer inspection and defect detection. Virtual metrology, which uses Al to
predict process variability on wafers that have not been physically measured, is also slowly
being rolled out. Summarized below are additional use cases or applications in which Al/ML can
enhance metrology, as well as challenges and potential solutions for each.

Inaccessible points in 3D structures

Conventional metrology tools have limited capability to evaluate or measure points within 3D
structures where the probes or tools lack access. By combining inputs from physics-based
models, part geometry, and destructive testing, Al/ML may be able to predict, with high
accuracy and repeatability, measurements at these inaccessible points—somewhat akin to
virtual metrology. However, significant testing, validation, and sensitivity analysis is needed prior
to deployment.

Management of large datasets for 3D measurements

Handling vast amounts of data becomes cumbersome, especially when dealing with intricate 3D
measurements that produce multidimensional datasets. Al/ML can simplify this challenge by
implementing dimensionality reduction techniques. These techniques reduce the size of the
dataset without significant information loss, making data management and subsequent analysis
more efficient and scalable.

Addressing complex failure analysis

With the intricacy of modern microelectronics, predicting potential device failures becomes a
more complex task, especially at the nanoscale. Al/ML-based models can mitigate these
challenges by predicting the failure rates for these devices. By training an ML model with
historical failure data under different conditions and parameters, the model can forecast
potential failures, allowing for preemptive corrective measures.

Scientific data annotation
With the sheer volume of data collected, data annotation quickly becomes the bottleneck for this
data being used for AI/ML models. Traditional data annotation is manual and requires domain
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expertise to ensure systematic, consistent, and correct annotation. Ironically, the very challenge
that must be overcome to make Al/ML function effectively can be addressed by Al/ML.
Generative Al and self-supervised techniques, like the Segment Anything Method (developed by
META), can complete initial segmentation, annotation, and anomaly detection. While it is still a
good idea to keep a human in the loop, especially at the outset, it can reduce much of the
upfront manual work. These annotated datasets can then be used to train further models or
used in downstream tasks, making the process for development of energy efficient device much
more efficient.

Improving Nondestructive Evaluation Techniques

Traditional nondestructive evaluation techniques (NDE) techniques might not offer the
granularity required for modern microelectronic devices, often missing out on micro- or nano-
scale defects that can compromise device performance. By integrating Al/ML with techniques
like X-ray computed tomography (CT), a non-invasive imaging method that captures cross-
sectional images using X-rays, a more in-depth and comprehensive assessment of internal
structures can be achieved. These algorithms, once trained on annotated data, can improve
detection, leading to improved device reliability and longevity.

Complexity in Multimodal, Multiscale Data

Metrology often encompasses diverse datasets, ranging from optical and electron microscopy
readings to 3D X-ray CT scans. Additionally, multi-modal data, which may include thermal,
mechanical, and electrical measurements, need to be integrated. Navigating and making sense
of this multi-modal, multi-scale data is challenging and demands sophisticated computational
techniques. By leveraging state-of-the-art Al techniques like multi-task learning, knowledge
distillation, and transfer learning, one can simultaneously interpret and correlate data from
various sources and scales. Designing an Al model that can effectively amalgamate insights
from different data types allows for a holistic understanding, thus enhancing the accuracy and
efficiency of metrology. This holistic approach ensures that the unique advantages of each data
source are utilized, leading to a more comprehensive assessment.

Action Plan for Artificial Intelligence/Machine Learning in Metrology
Table 80. Action Plan for AI/ML in Metrology

Metrology and Benchmarking
Approach

Utilization of Al/ML in metrology

Technologies of Interest: Inline metrology, non-destructive evaluation, data annotation, 3D metrology, etc.

Metrology Challenges Addressed Proposed Solution Pathways
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. Validate Al/ML models using comprehensive
testing and sensitivity analysis for accurate virtual

. Ensure the reliability of Al/ML predictions, given their dependency on metrology.

data quality. . Implement Al/ML dimensionality reduction to
efficiently handle and analyze extensive

. Overcome the limited capability of conventional metrology tools to metrology data.

evaluate inaccessible 3D structure points.
. Train Al/ML models on historical device failure

. Manage large datasets generated from 3D measurements and complex data to predict and prevent potential failures.

failure analysis.

. Employ generative Al and self-supervised learning
for efficient initial data segmentation and
anomaly detection.

. Automate scientific data annotation to address the bottleneck of
manual data processing.

. Enhance the granularity of NDE techniques for microelectronic devices. . Integrate Al/ML with advanced NDE methods like

. Address the complexity of integrating multi-modal, multi-scale datasets X-ray CT to detect internal microscale flaws.

in metrology. . Develop Al algorithms capable of interpreting and

correlating multi-modal, multi-scale data for a
comprehensive metrology assessment.

Major Tasks/Milestones Metrics Targets ‘ Timeline (years)

Inaccessible Points in 3D
Structures

Curate synthetic and real data, test
Al/ML models, understand
inaccessible 3D points, design and
execute experiments to measure
such points, and refine Al models.

Evaluate curated data quantity
and quality; assess data
completeness; measure
accuracy, precision, recall, and
F1 score; track inaccessible point
detection rates; and monitor
model accuracy enhancements.

Overcome challenges in
measuring inaccessible 3D
structure points.

2-3, varies with
the metrology
technique used

Management of Large Datasets
for 3D Measurements

Collect and organize vast 3D
datasets, implement dimensionality
reduction techniques, evaluate

Assess curated data quality,
measure dataset size reduction
and retained information,

compare model performances Address challenges in

svnthetic data quality. incorporate with different dataset sizes, analyzing extensive 3D 1-1.5
Y quality, Incorp evaluate synthetic data usability, datasets.
reduced synthetic data into Al and monitor model performance
training, and track dimensionality improvements with synthetic
reduction and synthesis process data
enhancements. ’
Evaluate parameter collection,
assess preprocessing readiness,
. . measure model metrics
ﬁgglr;:i‘?"g G Atz (accuracy, precision, recall, F1
Curate relevant parameters score, AUC-ROC [area under the
’ receiver operating characteristic o . .
pr?.rérciceps\s 'aﬁta, ddevIeI?p ?nld curve]), compare model Addlre§s |r;]tr||(I:ate device failure 2_3
validate models for failure analysis challenges.
prediction, refine the models, and gz;fgsr?fnlctjee?g;%?‘fsitgr?taiﬁii(
deplpy for real-time failure model enhancements, géuge
leniend; real-world performance, and
implement device improvements
post-analysis.
Scientific Data Annotation
Collect and preprocess relevant Assess data quantity and labeling
data, implement segmentation and quality, monitor label
anomaly detection, refine labels enhancement, compare
through active learning, create simulation quality to real-world Address limited annotated 1-2

physics-based simulations,
generate and assess synthetic
annotated data, and integrate this
data into subsequent training or
downstream tasks.

data, evaluate Al/ML model
performance, and track
downstream task enhancements
post-integration.

scientific data issues.

Improving Non-Destructive
Evaluation Techniques

Identify NDE challenges, develop
Al/ML solutions, test and refine the
algorithms, and incorporate them
into the NDE process.

Quantify identified challenges
and potential gains, review
academic contributions, measure
Al improvement in data quality
and acquisition time, and track
algorithms.

Improve NDE techniques.

type

3-5, varying with
the NDE system
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Complexity in Multi-Modal, Multi-
Scale Data
Recognize various data types or

Measure identified data type

diversity, assess Al performance Understand and leverage multi-

. ) . on different datasets, and . 2-3
scales; develop Al for integration . : modal, multi-scale data.
- Co h examine feature correlations and
and interpretation; and train, device performance metrics
validate, and test the models. P ’
eholde and Pote al Role Proje
Stakeholder Role
Product Manufacturers/Suppliers e  Supply Al-enabled devices and tools for model development and testing.
End Users/OEMs . Share insights on Al/ML application challenges, provide datasets, and offer feedback on

model outputs.

. Conduct foundational research in Al/ML, develop novel algorithms, and collaborate on

Academia )
prototype projects.

. Offer computational resources and expertise, as well as large-scale testing environments

National Laboratories for Al/ML models.

. Fund Al/ML research initiatives, develop policies for ethical Al application, and foster
collaboration between various stakeholders.

Required Resources Cross Collaboration Needs of Working Groups

. High-quality, diverse, and labeled datasets for training and validation

Government

. Other working groups in the stack (Materials and

e  Computing infrastructure with high processing capabilities Devices, Power and Control Electronics,

e  Secure data storage and management solutions Algorithms and Software, and Advanced

Packaging and Heterogeneous Integration) need
. Platforms and tools for model deployment and monitoring to provide requirements from technologies within
e  Domain-specific expertise for specialized Al/ML applications these groups to better develop platform.

3.3.3 Failure Analysis

Failure Analysis (FA) is a set of techniques aimed at identifying and understanding the root
causes of failures in electronic devices and components. With the introduction of new materials,
architectures, and integration techniques, traditional FA techniques may no longer be sufficient.
The complexity of emerging energy efficient devices means that pinpointing defects and
degradation mechanisms using conventional FA can be akin to finding a needle in a haystack.
Moreover, the pace of the microelectronics industry demands faster validation of devices and
components at the prototype stage, adding another layer of urgency to FA, which is typically
slow and methodical.

Recognizing these evolving challenges, FA techniques must undergo a transformation. A
holistic, multi-modal in-situ failure analysis platform was proposed as a solution pathway. Such
an approach facilitates real-time monitoring of device degradation, combining various
characterization modes simultaneously. An automated application can be leveraged to
synchronize these modes seamlessly, ensuring a comprehensive understanding of failure
mechanisms. In essence, the focus must shift from a post-mortem analysis to a real-time
observation, aiding in rapid and precise identification of failure modes. Furthermore, an
increased emphasis is needed on correlating specific stressing mechanisms directly with
observed failures, allowing for more accurate preemptive measures in device design.
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Action Plan for Failure Analysis

Table 81. Action Plan for Failure Analysis.

Metrology and Benchmarking
Approach

Improved failure analysis

) . Emerging R&D-stage devices and systems; in particular, those found within the roadmap.
Technologies of Interest: T o
) Also relevant to existing integrated circuit (IC) products.

Metrology Challenges Addressed Proposed Solution Pathways

Multi-modal, in-situ failure analysis platform. This platform will
include the following components:

o Difficulty of failure analysis as devices get more complex. e In-situ device stressing and degradation monitoring;

. Electrical, thermal, optical, and other modes of

. Faster validation of R&D-stage devices and components. o . )
characterization during stressing;

. Bridge the gap between idealized system metrology and actual . An application to synchronize different modes; and

system performance. . Modeling and failure visualization.

These components will work in concert to pinpoint sources of
failure and help correlate failure with stressing mechanism.

Major Tasks/Milestones Metrics Targets Timeline (years)
Integration of electrical, thermal, ) . . . . .
optical, and other modes of Electrical, thermal, optical, Pan_ty with results from single modality 15
A and other parameters testing
characterization on test stand
Software/application de\_/elo_pment Application error rate Minimize 1
for automated synchronization
. Electrical, thermal, optical, Parity with results from single modality

Development of testing protocol and other parameters testing 1
Development of analysis ) . . Understanding of where/when/why

. A Time/spatial resolution ; 2
framework and visualization failure happens
Testing and sensitivity analysis Sensitivity and specificity O_pt!mal detectlon_(_Jf il il 25

minimal false positives

Stakeholders and Potential Roles in Project

Stakeholder Role

Product Manufacturers/Suppliers . Provide new devices for characterization.

End Users/OEMs ’ i:gz:gg iﬁgleafclz(tzgtilggtsiéaetcgg}lscilrii:gzr?gn’igog (taggl needed to develop platform.
Academia . Develop new device designs and first-stage device development.
National Laboratories . Provide characterization expertise.
Government . Provide support and develop roadmap, coordination of efforts.

Required Resources Cross Collaboration Needs of Working Groups

. Other working groups in the stack (Materials and Devices,
. Test samples that are indicative of emerging devices Power and Control Electronics, and Advanced Packaging
and Heterogeneous Integration) need to provide
requirements from technologies within these groups to
better develop platform.

. End-user requirements to better develop platform

3.3.4 More Samples

To meet the ever-stringent process requirements for the next node, as well as the growing
catalogue of parameters of interest for R&D-stage devices, metrologists are commonly asked to
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develop techniques that are cheaper, better, and faster, or that measure something not
measured before. However, these developments are highly dependent on the availability and
quality of samples. Through extensive working group discussions and previous workshops held
by AMO (Office of Energy Efficiency & Renewable Energy 2021), one thing is clear: increased
access to diverse and representative samples is needed to substantially enhance and
accelerate the development of novel metrology techniques. Comprehensive and varied samples
become paramount to understand, test, and improve metrology, and this is especially the case
as 3D devices and systems become more prevalent.

Recognizing that complete elimination of IP restrictions is infeasible and unrealistic, creative
solutions to navigate this challenge are necessary. Exploring avenues such as establishing less
restrictive non-disclosure agreements (NDAs) or other protective mechanisms could serve as a
viable means to bridge this gap. Another idea is to establish a central body (e.g., government-
led or industry consortia, similar to SEMATECH) that develops and administers common test
structures (without IP) that are available to everyone. By establishing a framework that respects
industry sensitivities while ensuring researchers have access to samples, a more collaborative,
dynamic, and robust research environment can be fostered. This balanced approach will
undoubtedly propel the field of metrology forward, ensuring it continues to address the ever-
evolving needs of industry towards a more energy efficient future.

Action Plan for More Samples
Table 82. Action Plan for More Samples

Metrology and Benchmarking
Approach

Greater availability of samples

Technologies of Interest: All'IC technologies—emerging and existing

Metrology Challenges Addressed Proposed Solution Pathways

. Bridge the gap between idealized system metrology and actual
system performance.

. Explore mechanisms to overcome IP constraints from device
manufacturers, leading to challenges with developing new
metrology tools and capabilities.

. Encourage manufacturers or a centralized source to offer
realistic/indicative test structures and/or samples rather
than model systems (no IP included) for early research.

. Inability to evaluate properties of interest at inaccessible points
within 3D structures. Inability to measure and verify where
devices match designs.

. Fund companies to come up with test structures that are
well suited to evaluate a specific metrology.

. Consider adopting a Defense Advanced Research Projects
Agency (DARPA)-like model with a government group
ensuring that devices or common test structures be
available for everyone, potentially facilitating metrology
standards.

. Inaccuracy of material and interface properties that are used in
computational models of 3D structures (inclusive of challenges
associated with inhomogeneous, anisotropic, and nonlinear
materials).

. Measure material properties at relevant length scales. Current
properties based on bulk materials, which are different than
micro/nano scale.

. Create standard datasets through testing of a wide variety
of samples.

. Measure chemical and interfacial properties on side walls and
all-around structures.

Major Tasks/Milestones Requirements Targets Timeline (years)

Detailed specifications and
types of materials to be
studied.

Establish a comprehensive database of
materials and technologies.

Identify material system and

technology 0.5-1
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Identify metrology modality of
interest (i.e., electro-thermal,

Specific modality devices and

Develop expertise in multiple modalities,

Stakeholder

algorithms.

future analysis and application.

Role

transport, interface, X-ray, equipment relevant for the ) . . o 1-1.5
’ . . ensuring wide-ranging capabilities.
thermo-mechanical, dimensional, | task.
etc.)
Standardized designs and . - . .
Develop device/structure design schematics based on industry Sudiileut Gl a e Opt'.mal. LG 1-2
structures for varied applications.
standards.
Fabricate test devices, including Detailed process flow charts Ensure reliable and repeatable
. v and specifications for each o . 2-3
important process variations . fabrication processes across all devices.
device type.
Standardized measurement . .
Evaluate necessary tools and techniques for Acquire accurate and comprehensive 2_3
dimensional/material properties diverse material properties. material property data for modeling.
Develop models based on High-fidelity computational Develop predictive models that
; ) ) . accurately reflect real-world 34
dimensions/material properties tools and software.
performance.
Apply metrology of interest to test ('ig?itt;?alxct)gg f%qu:Ir?em:nécific test Ensure accurate and reliable 4-5
devices devi P measurements across all test scenarios.
evices.
Structured database systems . . -
Document measurement results and error-estimation Ensure data integrity and reliability for 4-5

Stakeholders and Potential Roles in Project

Product Manufacturers/Suppliers

. Develop and fabricate test samples with IP sensitivities in mind

. Collaborate with metrologists to address specific issues they face

Tool Vendors

. Create a metrology system (commercial tool) from a metrology technique—bridge valley of

death

Academia

. Modeling and simulation

. Workforce development

. Support circuit design activities

National Laboratories

. Provide characterization expertise and capabilities (e.g., beamlines)

. Support circuit design activities

Government

. Investment in fab runs to develop test structures

National Institute of Standards
and Technology (NIST)

. Provide standard measurement data and standard material properties (i.e., standardized

inputs and outputs)

Required Resources

. Consortium of industry, academia, and national laboratories to
foster collaboration and channels of communication

Cross Collaboration Needs of Working Groups

. Other working groups engaged in components and system
development (Materials and Devices, Circuits and
Architectures, Advanced Packaging and Heterogeneous
Integration, and Manufacturing Energy Efficiency and
Sustainability) need to provide requirements and samples

to the Metrology group to meet these needs.

3.3.5 Benchmarking

Benchmarking enables a consistent comparison of technologies through standardized test
methodologies and may help prioritize R&D to support the most promising energy-efficient
technologies. It can also establish standards against which performance and efficiency can be
measured. Currently, there is a gap in benchmarking the latest advanced technologies and
approaches emerging today, including those in packaging, circuits, devices, and
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software/algorithms. A sustained and comprehensive benchmarking effort is needed, which may
include updating Nikonov and Young’s work and expanding it to include higher levels of the
stack (Nikonov and Young 2013). In addition, a standardized, system-level model is needed to
holistically understand each component’s contribution to overall system efficiency.

The primary objective of system-level models is to assess the impact and effectiveness of
technological innovations. These models distinguish between innovations that offer real
advantages and those that fall short when integrated into larger systems. These models are
essential in today’s complex technology environments, particularly in data center management
and edge devices, and may help illuminate what technologies or technology combinations may
provide the largest energy efficiency benefits at the system level. For example, they can analyze
the impact of changes in device nodes on data center energy efficiency.

Described below are the key considerations when developing system-level models.

System Complexity

Understanding each component’s impact on the overall system is critical for optimizing system
efficiency. This requires a model that elucidates the interactions within the system, highlighting
the ripple effects of changes in one area on the entire system. Recognizing the
interdependencies of components, while complex, is crucial for the model's accuracy and
integral for transitioning from a focus on isolated components to a comprehensive system
perspective.

Model Development and Simulation

After identifying system components and their interdependencies, these must then be integrated
into a modeling framework. Different system layers, from devices to data centers, require
distinct models and simulation tools. Ensuring seamless data transfer and interoperability
between model levels are key challenges to ensure reliable outputs. Collaboration across
various teams such as design engineers, simulation experts, metrologists, and other relevant
stakeholders is necessary to achieve a holistic view and effective energy efficient solutions.

Continuous Improvement

To meet evolving energy efficient needs and challenges, continuous improvement must be
integral to the refinement and maintenance of these models. Implementing a feedback loop,
where insights from system-level measurements consistently inform design and manufacturing
processes, enables ongoing refinement and enhancement of the model. This approach not only
addresses current challenges but also anticipates future ones, ensuring the model remains
robust, efficient, and adaptable in a dynamic technological environment.

Action plan for Benchmarking

Table 83. Action Plan for Benchmarking.

Metrology and Benchmarking

Approach Development of energy-focused benchmarking

All energy-efficient technologies contained within this roadmap, as well as those emerging in

Technologies of Interest: academic and industry R&D settings.

Metrology Challenges Addressed Proposed Solution Pathways
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. Collect benchmarking data and develop models to distinguish

between feasible and impractical ideas. ¢ Deploy system-level models to quantify energy

consumption trade-offs.
. Define energy-efficiency metrics for specific workflows, with a

- ) . Develop a framework to capture energy consumption
focus on ensuring their relevance over the roadmap scope. P P &y P

trade-offs.

. Develop a unified benchmarking standard that assesses the
energy efficiency of emerging technologies across all levels of
the compute stack.

. Utilize system-level models to address data center
efficiency concerns.

. Identify subsystem-level models to understand energy

. Quantify the impact of component-level efficiency gains on consumption dynamics.

overall system performance due to complex interdependencies.

Major Tasks/Milestones Metrics ‘ Targets Timeline
System-Level Benchmarking
Align metrics with technological Establish standard metrics Develop a set of industry-accepted
. . : 8 months

advancements and industry for system-level modeling metrics
needs
Tackle System Complexity
Ensure all system components Uniform methods and .

. ; Streamline system measurements 6 months
are evaluated holistically, practices
reducing discrepancies
Model Development and
Snmul_atlon_ Ir)tegrat_lon of advanced Efficient predictive outcomes 10 months
Use simulation tools to foresee simulation tools
system behavior and interactions
Continuous Improvement
Implement a feedback loop to Feedback mechanism for . . .

o Iterative system improvements Ongoing

ensure systems stay robust, insights
efficient, and future-ready
Standardize Practices
Address complications that arise | Creation of universal .
due to non-standardized standards REERITON EERES 2l EXEED e
practices across sectors

Stakeholders and Potential Roles in Project

Stakeholder Role

Product Manufacturers/Suppliers | e Provide hardware that meets software requirements.

End Users/OEMs . Update infrastructure to meet hardware needs and improve efficiency. Purchase and install
hardware. Collaborate with data center operators for specific requirements.
Academia . Innovate transformational approaches, such as new materials and computing architectures.
National Laboratories . Lead in technological development and mature academic innovations.

. Provide funding for new technological approaches and set requirements for efficiency. Fund

Government research and set standards for system design.

Required Resources Cross Collaboration Needs of Working Groups

. Consortium or organized body to enable various stakeholders’

continuous communication . All working groups need requirements related to
infrastructure and thermal management, ensuring that the
solutions are practically deployable and that the models
. High-fidelity modeling, ultimately moving toward reduced-order accurately characterize those parameters.

modeling

. Demonstration platform such as data center or test bed

3.3.6 Conclusion for Metrology and Benchmarking

In the Metrology and Benchmarking chapter, the focus has been on enhancing measurement
techniques to keep pace with the rapid advancement of semiconductor technologies. Precision
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in metrology is crucial for validating the energy efficiency and performance of emerging devices,
especially those that are 3D or heterogeneous in nature.

Given the increasing complex structures and materials in semiconductor manufacturing,
traditional metrology techniques often fall short. As a response, there is a push to develop
advanced, non-destructive metrology methods that can provide detailed insights without
damaging the structures of cutting-edge devices. In addition, the integration of Al and ML into
metrology processes not only improves the precision and adaptability of these measurements
but also ensures that the evaluations are deeply aligned with actual device performance.

Furthermore, establishing continuous and adaptable benchmarking standards is imperative for
accurately assessing the energy efficiency of new technologies. These standards must be
robust enough to guide industry-wide R&D efforts, helping to streamline the validation and
deployment of innovative materials and architectures.

The chapter stresses the importance of a cohesive approach that bridges the gap between
metrology and actual device performance. By fostering the developments in Al-enhanced
metrology and advocating for the broad accessibility of diverse test samples, the roadmap aims
to support the semiconductor industry's move towards more sustainable and energy-efficient
solutions. This strategic focus on advanced metrology and benchmarking is essential for
accelerating the deployment of technologies that meet the demands of modern energy
efficiency standards.
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3.4 Education and Workforce Development (EWD)

To address the significant challenges posed by the increasing energy consumption of
microelectronics, the EES2 roadmap targets crucial energy efficiency and reduction objectives.
This ambition necessitates a workforce that is both expanding and rapidly evolving and is
equipped to research, manufacture, and deploy the innovations recommended. Recent strategic
frameworks, particularly the National Microelectronics Strategy released on March 8, 2024,
have laid the groundwork for education and workforce development (EWD) in this sector
(National Science and Technology Council 2024). The EES2 roadmap draws inspiration from
this strategy, proposing initiatives that not only enhance technical skills but also foster a
sustainability-conscious mindset among both current and future professionals in the field.

The pressing nature of energy efficiency and climate issues demands immediate action, beyond
waiting for the next generation of engineers, scientists, and technicians. A report by The New
York Times on March 14, 2024 highlights the rapid pace of data center construction worldwide,
emphasizing the need for swift educational reform to include all learners, particularly the current
workforce responsible for deploying these centers (Plumer and Popovich 2024). Our
educational recommendations are designed to facilitate the rapid incorporation of workers from
adjacent fields into the microelectronics sector, kickstarting the journey towards doubling energy
efficiency as early as 2024.

The EES2 roadmap outlines four critical EWD goals to be pursued alongside technological
advancements:

° Raise public awareness on the crucial role energy-efficient semiconductors play in
global sustainability.

. Engage students and workforce in EES2-driven microelectronics research.

° Empower a future-ready microelectronics workforce through multidisciplinary
education, training, and continuous support for educators and learners.

. Navigate demographic shifts and engage diverse talent.

These goals underscore the need for a skilled workforce that not only excels in technical areas
but also prioritizes and understands the critical importance of energy efficiency. Discussions
from the April 2023 workforce-focused roadmap meeting at SLAC National Accelerator
Laboratory further underscore the necessity of rethinking our approach to motivating and
training the workforce responsible for microelectronics manufacturing and deployment (SLAC
National Accelerator Laboratory 2023).

Achieving and maintaining U.S. leadership in energy-efficient microelectronics hinges on our
ability to develop a workforce proficient in every aspect of the field. The substantial role of the
semiconductor industry in the U.S. economy, supporting 1.85 million jobs as of 2020 with direct
employment numbers rising sharply by 2023, reflects the industry's growth and the attractive
nature of its job market (Semiconductor Industry Association 2021, 2023; U.S. Bureau of Labor
Statistics 2024).
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Women in Electronics and Computing

Despite representing a slim maijority of the population and the dominant segment of those
pursuing higher education, women remain significantly underrepresented in the fields of
physical sciences, engineering, and specifically in microelectronics and power electronics
manufacturing and deployment. The National Strategy underscores the importance of starting
early, advocating for initiatives beginning in elementary school to bridge this gap and foster
sustainable change. We refer readers to both the National Strategy and our own Section 4 for
guidance on initiating this crucial shift.

As such, the urgency of today’s environmental challenges compels us to accelerate these
efforts. The year 2024 marks a critical point in confronting the threats of climate change and the
looming energy crisis. It is imperative that women are empowered to rapidly transition into
careers within sustainable electronics. Clear communication about the necessity of this shift,
coupled with robust support for career changes, can catalyze immediate action.

Historically, women have demonstrated remarkable adaptability and capacity for rapid career
shifts in times of need, as exemplified by the iconic Rosie the Riveter during World War Il. This
historical precedent illustrates the potential for significant workforce transformation. While
challenges vary among different groups, many women could transition more readily if given
appropriate economic, cultural, and mentoring support.

In response to the pressing challenges of our time, it is crucial to fully engage the potential of
women in the electronics and computing sectors. This commitment not only addresses gender
disparities but also cultivates a resilient, innovative workforce capable of driving our society
towards a more sustainable future.

Working Group Methodology

Recognizing the rapidly evolving landscape of the semiconductor industry, the working group
sought to address the gap between existing educational programs and the industry’s imminent
needs. Emphasis was placed on developing curriculum frameworks that incorporate advanced
technical knowledge with an acute awareness of sustainability and energy efficiency. The group
also tackled challenges related to diversity in science, technology, engineering, and
mathematics (STEM) fields, early childhood education, and the direct linkage between
educational pathways and fulfilling career opportunities in the microelectronics sector. Through
their deliberations, the working group aimed to lay the groundwork for educational reform that
not only meets the immediate technical demands of the EES2 initiative but also ensures the
long-term sustainability of the microelectronics industry through a well-informed, skilled, and
diverse workforce.

Key Takeaways

The key challenges and opportunities for education and workforce development in support of
the EES2 initiative are summarized in Table 84. With a spotlight on the nuanced workforce
challenges tied to the roadmap, the DOE’s recommendations target the development of industry
professionals with the requisite education and training to advance EES2-related technologies
both now and in the future.

Table 84. Education and Workforce Development Key Needs and Opportunities

Area Key Needs and Opportunities
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o Elevate public engagement by promoting the critical
importance of energy-efficient semiconductors for
global sustainability through interactive and
educational initiatives.

_ e Foster hands-on student and workforce
Goal 2: Student J engagement in microelectronics research through
—

Goal 1: Public
Awareness

and Workforce . o . .
E ¢ dynamic academia-industry collaborations aligned
ngagemen with EES2-driven projects.

_ o Craft multidisciplinary and agile educational
Ciozl SF [Fulie: .r programs that prioritize energy efficiency and
°
-

sy ordos provide continual educator support to empower a
Empowerment
future-ready workforce.

e Harness demographic diversity to invigorate the
microelectronics industry with innovative and
inclusive strategies for talent development and
engagement.

Goal 4: Diversity &
Demographics

Grand Challenges

The following represent grand challenges, major resource needs, and key solution pathways
distilled from working group discussions:

e Evolving education curricula to pace with microelectronics innovation, emphasizing
energy efficiency and sustainability from foundational learning.

¢ Cultivating a technically proficient workforce that integrates environmental
considerations into its work, fostering a culture of sustainability within the industry.

e Expanding the diversity and inclusivity of the STEM workforce to incorporate a broader
range of perspectives and innovative solutions for energy-efficient microelectronics.

o Creating educational pathways that meld practical experiences with theoretical
knowledge, highlighting the importance of co-design in hardware, software, and
architecture for enhancing energy efficiency.

e Encouraging continuous professional development and lifelong learning to align with
rapid technological advancements and the evolving landscape of energy efficiency.

e Promoting cross-disciplinary collaboration between academia, industry, and government
to ensure educational programs meet the microelectronics industry's real-world
demands.

We acknowledge the limitations of this report, recognizing it does not encapsulate the entire
spectrum of microelectronics and related ICT education and workforce needs for the U.S. and
international EES2 participants. Insights from the 2023 MAPT Roadmap and contributions from
EES2 members, including those from SRC, SEMI, and IEEE, provide a more comprehensive
review and additional depth on education and workforce programs in the semiconductor
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industry. These contributions shape our understanding and guide our strategies for fostering a
dynamic and capable workforce for the future.

3.4.1 Raise Public Awareness on the Crucial Role Energy-Efficient
Semiconductors Play in Global Sustainability

Raising public awareness about the critical role of semiconductors in driving sustainable energy
solutions is essential for fostering a broader understanding and support for energy efficiency
within the industry. As the backbone of modern technology, semiconductors have the unique
potential to significantly reduce global energy consumption through innovative, eco-friendly
applications. Educating the public on the importance of semiconductors in achieving a
sustainable future not only highlights the industry’s commitment to environmental stewardship
but also inspires collective action towards a net-zero emissions goal. By engaging communities
through informative and interactive initiatives, we can catalyze a shift towards more sustainable
practices across industries and encourage the next generation of innovators to prioritize energy
efficiency in their creations.

To bolster public engagement and drive sustainability in the semiconductor sector, the following
strategies are tailored to emphasize energy efficiency and sustainable practices:

¢ Develop and promote museum exhibits and public activities that provide insightful,
actionable information on the role of semiconductors in achieving energy sustainability,
enhancing public understanding of their critical importance in green technology.

e Forge connections with networks of science centers to disseminate region-specific
educational content that emphasizes local contributions to sustainable semiconductor
practices and energy efficiency.

e Craft and distribute educational kits focused on sustainable microelectronics and
designed for use in events celebrating advancements in energy-efficient technologies.

¢ Maximize the use of multimedia and social media platforms to spread awareness about
the environmental impact of semiconductors and the industry's efforts toward
sustainability.

o Engage communities through competitions and challenges that highlight the importance
of energy efficiency and sustainable innovation in the semiconductor industry,
encouraging a new generation to contribute to eco-friendly advancements.

3.4.2 Engage Students and Workforce in Microelectronics Research

To better prepare the next generation for challenges and opportunities listed in this roadmap,
leveraging existing educational programs plays a crucial role. These programs, ranging from
early childhood development through college, exemplify innovative approaches to integrating
STEM principles into various stages of learning. They not only provide valuable resources for
educators but also introduce students to the wonders of engineering and technology from a
young age. By building on these foundations, we can create a continuum of learning that
progressively equips students with the knowledge and skills required for success in the rapidly
evolving tech landscape. There are exemplary case studies of existing programs that have
made significant strides in STEM education:
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¢ Project Learning Tree: This project offers teachers activity guides to enrich classroom
learning, with similar initiatives spearheaded by CM partners at CSU and IACMI
(https://www.plt.org/).

o Engineering is Elementary (EIE): Developed by the Boston Museum of Science, this
program integrates STEM content into K-5 reading curricula, providing new material
without overburdening the existing curriculum (https://www.eie.org/).

o Project Lead the Way (PLTW): PLTW is a curriculum focused on bringing engineering
and technology to high schools, introducing students to engineering concepts to prepare
them for further education in engineering fields (https://www.pltw.org/).

o Engineering for Us All (ed4usa): This initiative is aimed at providing a foundational
engineering curriculum for high school students, potentially offering college credit upon
completion (https://e4usa.org/).

o TeachEngineering: A repository of curricular tools and aids for engineering education,
this website is a platform where the EES2 initiative can be shared with a broad audience
of educators (https://www.teachengineering.org/).

o Engineering Ambassadors Network: This network comprises a consortium of around
40 universities training engineering students to deliver compelling, age-appropriate
presentations in K—12 schools and after-school programs
(https://www.engineeringambassadorsnetwork.org/).

These programs exemplify the diverse approaches to incorporating STEM education across
different educational stages in K-12, highlighting the importance of early engagement and
continuous learning pathways in building a future-ready workforce.

From the office of AMMTO, the Lab-Embedded Entrepreneurship Program (LEEP) presents a
groundbreaking opportunity to engage researchers and the workforce in cutting-edge
microelectronics research (EERE 2024). LEEP equips budding entrepreneurs and researchers
with the tools, mentorship, and resources to convert their innovative ideas into marketable
solutions, focusing on clean energy and technology.

Private Investment

Mentorship &
Business Training

Access to
National Lab
Resources
2 Years
Stipend &
Benefits
Leads to networking,
) community building, and
CRADA* provides improved outcomes.
Technology funds for resources
Idea .
o Allows innovators to

focus on technology &
business full-time.

*CRADA - Cooperative research & development agreement
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Figure 69. LEEP brings technology idea to market-ready solutions. Source: EERE 2024

The LEEP program not only equips innovators with financial support and mentoring but also
fosters connections with national lab resources and facilitates industry collaborations. Through
initiatives like the annual Demo Day, LEEP encourages the confluence of investors and industry
experts, catalyzing the transition from academic research to market-ready solutions. By
embedding entrepreneurship in students’ educational journey, LEEP ensures that students not
only conceive innovative ideas but also possess the tools and knowledge to translate them into
viable products that support the nation's energy efficiency and sustainability goals. This
engagement is crucial for fostering a competitive edge and positioning the United States as a
leader in semiconductor technology and energy-efficient innovation.

As the EES2 roadmap suggests, enriching this educational matrix with programs that nurture a
research-driven mindset is paramount. Providing hands-on access to state-of-the-art research
facilities and fostering an environment that prioritizes innovation and entrepreneurship ensures
that the U.S. continues to pave the way in semiconductor technology and energy efficiency. The
concerted effort to bridge education with actionable industry experience will prepare the U.S.
workforce to not only face future technological challenges but also to lead the charge in
sustainable advancement.

3.4.3 Empower a Future-Ready Microelectronics Workforce Through
Multidisciplinary Education, Training, and Continuous Support for
Educators and Learners

The burgeoning complexity of semiconductor technologies, such as advancements in
neuromorphic and quantum computing, underscores the urgency for interdisciplinary problem-
solving skills. This necessitates the development of highly skilled candidates, emphasizing the
importance of advanced degrees and highlighting the intense competition for talent, particularly
as foreign-born scientists and engineers significantly contribute to this sector (American
Immigration Council 2022).

To fulfill the evolving needs of the semiconductor workforce, comprehensive strategies must be
developed to empower educators and stimulate students across all educational tiers. Beyond
the foundational fields of electrical engineering and computer science, the growing complexity in
semiconductor innovations makes interdisciplinary expertise—encompassing chemistry,
industrial and environmental engineering, and materials science—increasingly vital for achieving
energy efficiency. Enhancing K—12 education through state-aligned, quality resources and
hands-on projects is essential for sparking interest in microelectronics careers at an earlier age.

Programs like the NSF’s Research Experiences for Teachers and the Robert Noyce Teacher
Scholarship Program are instrumental in strengthening STEM education, which is vital for
nurturing a future-ready technical workforce. To cultivate talent for skilled technical roles,
regionally tailored training programs offering credentials like certificates and diplomas, are often
more suitable than traditional degree paths. Such localized training initiatives, especially in
burgeoning semiconductor hubs, benefit significantly from partnerships between the industry,
educational institutions, and regional training programs.

In higher education, adaptable curricula that keep pace with the swift advancements in
semiconductors are necessary to prevent a divergence between academic preparation and
industry demands. Proactive collaboration among industry leaders, educators, and labor
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representatives is key to developing cutting-edge curricula and programs that cater to imminent
industry requirements and encourage interdisciplinary solutions for the multifaceted challenges
in semiconductor R&D.

Non-degree programs like Penn State’s Microelectronics and Nanomanufacturing Certificate
Program exemplify effective industry-academia collaboration. By providing hands-on training
and certifications in nanotechnology, these programs forge direct pathways into the
semiconductor workforce. Expanding opportunities for mentorship, apprenticeships, and on-the-
job training that reflect the current pace of technological innovation in microelectronics is crucial.
Creating equitable access to these learning avenues, particularly in underserved regions, and
potentially allowing such professional experience to count towards college credit, will streamline
career progression in the microelectronics industry.

The following are key action plans to cultivate a future-ready microelectronics workforce:

o Develop comprehensive, interdisciplinary curricula integrating a co-design of hardware
and software to address semiconductor complexities and energy efficiency goals.

o Enhance K-12 engagement through quality, state-aligned educational resources and
stimulating hands-on projects to spark early interest in microelectronics.

e Bolster STEM teacher training through programs like NSF’s Research Experiences for
Teachers and the Robert Noyce Teacher Scholarship Program, aiming to build a
technically proficient workforce.

¢ Promote region-specific technical training and credentialing programs, leveraging
industry-education partnerships to address local workforce needs in semiconductor
hubs.

e Ensure higher education curricula adapt to rapid semiconductor advancements, fostering
industry-academia collaboration for innovative, relevant program development.

o Expand non-degree pathways such as certifications and apprenticeships, providing
hands-on, industry-aligned training to streamline entry into the semiconductor workforce.

¢ Create opportunities for mentorship, internships, and professional training that reflect the
pace of microelectronics innovation, offering equitable access across diverse
communities.

¢ Allow professional experiences to count towards academic credit, facilitating smoother
transitions from education to careers in microelectronics.

3.4.3.1 Curriculum Development

In the subsequent sections, distinct curriculum needs across three critical domains are
discussed: Bits, which focus on hardware; Systems, which encompass the co-design of
hardware, software, and architecture; and Applications, which deal with algorithms and
software. This division is designed to provide a structured approach to curriculum development,
enabling targeted educational strategies that cater to the specific skill sets and knowledge areas
essential for each aspect of the microelectronics field. By addressing these domains, we lay out
a comprehensive educational pathway that supports the EES2 initiative's vision for a
sustainable and technologically adept future.
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The following coursework and ideas are recommendations derived from this roadmap, designed
to address the evolving needs of the microelectronics industry.

For bits (hardware only)

In response to the technological advancements highlighted by the EES2 initiative, the
curriculum for hardware engineering and material science must be rigorously updated to equip
students with the knowledge and skills necessary to innovate in the field of energy-efficient
microelectronics. It should include:

¢ Introduction to advanced material science for microelectronics. Courses should
cover the basics of emerging 2D materials, carbon nanotubes (CNTs), ferroelectrics,
spintronics, and other novel materials. Focus on their role in enhancing the energy
efficiency of interconnects, contacts, and interlayer dielectrics, as well as thermal
interface materials.

¢ Fundamentals of energy-efficient device physics. Educate students on the principles
of transistor and device-level engineering, including memory and logic devices, analog
devices, and the implications of novel transistor structures such as Si-GAA and TFETs
for energy savings.

e Practical applications of novel materials. Through lab work and projects, provide
hands-on experience with fabricating and testing devices made from advanced
materials. Emphasize the energy efficiency aspects and performance improvements
over traditional silicon-based technologies.

o Design and simulation of energy-efficient devices. Integrate courses on CAD and
simulation tools specific to devices incorporating novel materials. Teach students to
predict device performance, focusing on energy efficiency and power consumption
metrics.

o Capstone projects in energy-efficient hardware design. Encourage students to
undertake comprehensive projects that require them to design, fabricate, and test
energy-efficient microelectronic devices, applying their knowledge of advanced materials
and device architectures.

By focusing on these critical areas, the “bits” curriculum will prepare students to contribute
significantly to the development of next-generation microelectronics, aligning with the EES2
initiative’s goals for a more energy-efficient and sustainable future in computing technology.
Collaborative learning experiences, such as team projects and industry internships, will further
enhance students’ ability to apply theoretical knowledge to real-world challenges in energy-
efficient hardware design.

For Systems (Co-Design of Hardware, Circuits, and Architecture)

The rapid evolution in microelectronics necessitates a curriculum that equips students with
advanced knowledge in circuit design and architectural innovations, focusing on energy
efficiency and performance optimization.

This includes:

o Secure and private computing. Introduce the principles of homomorphic encryption
and private information retrieval (PIR) technologies, emphasizing their role in enabling
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secure cloud computing and data privacy without compromising on computational
efficiency.

o Computational reliability. Offer courses on error correction code (ECC) memory
technologies, highlighting their importance in enhancing the reliability of data storage
and processing in high-stakes environments like data centers and critical servers.

o Efficient communication protocols. Educate students on optimizing data movement
through efficient communication protocols, including the design and implementation of
libraries like NVIDIA’s Collective Communication Library (NCCL) for Al workloads.

¢ Foundations of neuromorphic computing. Provide a comprehensive overview of
neuromorphic computing, covering the basics of neural computation, including neurons,
synapses, dendrites, and cortex operations. Dive into spike encoding mechanisms,
spiking and non-spiking brain-inspired networks, and learning rules for spiking neural
networks (SNNs).

¢ Design and simulation of neuromorphic systems. Advanced courses on designing
digital neural networks and neuromorphic accelerators, including weight quantization,
spike design, and learning constraints. Study existing neuromorphic hardware like Intel
Loihi, IBM TrueNorth, and others to understand the practical applications and
challenges.

¢ Quantum computing introduction. Offer an introductory course on quantum
computing, covering the basics of quantum mechanics as applied to computing, qubits,
entanglement, and quantum algorithms. Explore the potential energy efficiency benefits
and challenges of quantum systems.

¢ Advanced architectural design for energy efficiency. Focus on the design of energy-
efficient computing architectures, including the use of computational co-design strategies
that integrate hardware and software considerations from the ground up.

o Practical applications and capstone projects. Engage students in hands-on projects
that involve designing, simulating, and optimizing circuits and architectures for energy
efficiency. Encourage projects that incorporate secure computing, neuromorphic
systems, and quantum computing concepts.

By addressing these key areas, the “systems” curriculum will prepare students to navigate the
complexities of modern circuit design and architecture, with a strong emphasis on energy
efficiency and the adoption of next-generation computing paradigms. Through a combination of
theoretical knowledge and practical experience, students will be well-equipped to contribute to
the advancement of energy-efficient microelectronics, aligning with the goals of the EES2
initiative.

For Applications (Algorithms and Software)

In an era marked by energy-conscious technological innovation, the curriculum for software and
applications must evolve to incorporate principles of energy efficiency from the ground up.
Students should be trained in the design and implementation of algorithms and software that
optimize energy use without sacrificing performance.

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY | ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE 289



Energy Efficiency Scaling for Two Decades Research and Development Roadmap—Version 1.0

o Foundational programming and code optimizations: Introduce programming with an
emphasis on writing energy-efficient code. Courses must cover runtime optimizations,
efficient memory management, and the use of energy-aware compilers. The
“Performance Engineering of Software Systems” course currently offered at MIT is an
excellent model for addressing this need.

¢ Advanced architectures and system integration: Educate students on the software
implications of emerging energy-efficient computational architectures, such as quantum
computing and neuromorphic systems.

e Al and ML for energy efficiency: Train students to create and optimize Al algorithms
that minimize energy consumption, incorporating techniques such as sparse computing
and low-power neural networks.

o Embedded and system-level programming: Focus on embedded system design with
an energy-first approach, including real-time operating systems, microcontroller
programming, and loT applications.

¢ Domain-specific software development: Teach the creation of software for domain-
specific architectures, including the use of domain-specific languages that allow high-
level problem descriptions to map efficiently to low-power hardware.

o Application development for energy efficiency: Offer courses in mobile and web
development should emphasize strategies for reducing energy use, from sensor data
processing to network communications.

o Al-enhanced CAD tools: Include Al methodologies for optimizing chip design in CAD
tools, enabling students to contribute to the creation of energy-efficient hardware.

By integrating these components into the software curriculum, students will be prepared to
contribute to the EES2 initiative’s vision of a sustainable computing future. Collaborations with
industry partners for internships and co-op programs can provide practical experience, ensuring
that graduates not only understand the theory behind energy-efficient computing but can also
apply it in real-world settings.

Cross-Cutting Topics

In addition to the foundational domains of “Bits,” “Systems,” and “Applications,” our curriculum
encompasses cross-cutting topics that underscore the importance of co-design in achieving
energy-efficient microelectronics. These areas bridge the gaps between hardware engineering,
circuit design, architectural innovations, and software development -- ensuring that students
grasp the multidisciplinary nature of creating comprehensive solutions for energy-efficient
computing.

The recommendations below are derived from this roadmap, aimed at instilling a co-design
philosophy in students, preparing them for the collaborative, interdisciplinary challenges of the
microelectronics industry as outlined in the EES2 initiative.

This includes:

o Co-design for energy efficiency. Introduce students to the principles of co-design,
where hardware, software, and system architecture are developed in tandem to optimize
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energy efficiency. This includes understanding the trade-offs and synergies between
different components of microelectronics systems.

¢ Integrated projects in advanced packaging and heterogeneous integration.
Incorporate projects that require students to design and evaluate advanced packaging
solutions, such as 2.5D and 3D stacking, focusing on how these technologies impact
system performance and energy efficiency. Emphasize the role of heterogeneous
integration in enabling high-performance, energy-efficient systems.

o EDA tools for co-design. Offer courses that delve into the use of EDA tools in the co-
design process, highlighting how these tools facilitate the integrated development of
electronic systems, circuits, and components. Special attention should be paid to
process design kits (PDKs) and their role in supporting co-design efforts.

o AI/ML applications in co-design. Explore how Al and ML algorithms can assist in the
co-design process, from optimizing microelectronic device layouts for energy efficiency
to predicting the performance of integrated systems. Discuss the use of Al in enhancing
metrology tools for better manufacturing precision.

o Capstone projects on interdisciplinary design. Engage students in capstone projects
that require them to apply knowledge from across the curriculum to design, simulate,
and possibly prototype an energy-efficient microelectronic device or system. This could
involve integrating advanced packaging techniques, leveraging EDA software for design
optimization, and applying Al/ML for performance enhancement.

¢ Industry collaborations for practical experience. Foster partnerships with companies
and research institutions involved in advanced packaging, EDA software development,
and Al/ML applications in microelectronics. These collaborations can provide students
with internships, co-op programs, and access to cutting-edge technologies and
methodologies, ensuring their education is directly relevant to industry needs.

By emphasizing co-design in these cross-cutting topics, students will gain a comprehensive
understanding of the complexities and interdisciplinary nature of modern microelectronics
design and manufacturing. This holistic view is crucial for innovating in the realm of energy-
efficient computing and aligns with the ambitious goals of the EES2 initiative.

3.4.4 Navigate Demographic Shifts and Engage Diverse Talent

The talent competition within the STEM sector is increasingly fierce, particularly in hardware
engineering and computer software development, highlighting the crucial role of advanced
degrees. The past decade has seen Ph.D. hires in the industry double, with foreign-born
scientists and engineers constituting 41% of high-skilled technical workers in the semiconductor
sector (Hunt and Zwetsloot 2020; National Center for Science and Engineering Statistics 2021).
Furthermore, foreign-born individuals represent 30% of all science and engineering workers and
hold over half of the doctorates in pivotal fields such as engineering, computer science, and
mathematics (Khan, Robbins, and Okrent 2020). However, outdated immigration policies have
contributed to a talent drain, diminishing the pool of international talent and simultaneously
deterring U.S. students from entering the microelectronics field, thereby jeopardizing the
industry’s advancements in energy efficiency (Congressional Research Service 2022).
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Addressing the talent shortfall necessitates formulating strategies to attract, develop, and retain
a diverse talent pool, leveraging both domestic and international expertise. Initiatives such as
the Growing Apprenticeships in Nanotechnology and Semiconductors (GAINS) program and the
National Talent Hub underscore the critical role of public and private collaboration in aligning
workforce development with the goals of the EES2 roadmap, setting a course for a more
diverse, innovative, and energy-efficient future in microelectronics.

The semiconductor industry stands at the forefront of addressing global energy challenges, with
the potential to significantly impact energy efficiency and sustainability across communities and
society. In this vein, it is imperative to prepare an inclusive workforce that is not only well-versed
in the current and future landscapes of microelectronics but is also increasingly focused on the
benefits of energy efficiency. This preparation extends across educational spectrums, notably
within smaller and rural schools, community colleges, Historically Black Colleges and
Universities (HBCUSs), Tribally Controlled Colleges and Universities (TCCUs), and other
minority-serving institutions (MSls).

By broadening microelectronics education and training across these diverse educational
institutions, we unlock opportunities for underrepresented talent in the semiconductor industry.
This inclusive approach not only fosters innovation but also cultivates a professional
environment that is welcoming and positive, attracting a wider pool of talent. Implementing
bridging programs and providing comprehensive support services, such as childcare, further
ensures that these opportunities are accessible to all, thus addressing gaps and ensuring a
robust pipeline of talent into the industry.

The semiconductor industry is experiencing a pivotal demographic transformation that mirrors
the broader shift toward greater diversity in society. This change presents unique challenges
and opportunities. Key to this demographic shift is the recognition of the “enthused unfocused”
groups who show an interest in semiconductors but perceive the field as daunting or
inaccessible. These groups, often inclusive of women and minorities, represent a significant
untapped potential (Institution of Mechanical Engineers 2014). To effectively engage them, the
industry needs to extend educational outreach efforts that simplify the conceptual presentation
of semiconductor technology and make the sector more approachabile. Initiatives like
mentorship programs, specialized internships, and interactive workshops are essential in
providing the necessary insight and encouragement to pursue careers in this field.

3.4.4.1 Underserved Communities

The traditional composition of the STEM workforce—predominantly white, non-Hispanic, and
male, particularly at the post-secondary level—is undergoing a transformation. This change is
expected to become even more pronounced over the next two decades.

A key insight into this evolving landscape can be gleaned from a comprehensive study by
Finegold in 2014 (Institution of Mechanical Engineers 2014). He identifies five distinct groups, or
‘tribes,” among 11- to 19-year-olds in the United Kingdom, with implications for understanding
similar trends in the United States. The study highlights that the majority of youth inclined
towards engineering careers belong to the ‘STEM devotees’ group, primarily comprising white
males with close ties to adults in STEM professions. However, the study also reveals that other
groups are not inherently averse to engineering; they simply need a different approach to
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Figure 70. STEM workforce diversity projection. Source: BRDG
Accessible pathways for program
diverse talents to enter and
thrive in the semiconductor industry are needed. This can be achieved through scholarship
programs, targeted recruitment initiatives, and collaborations with organizations dedicated to
diversity in STEM fields. These pathways should aim to lower the barriers to entry and provide
tangible opportunities for these groups to contribute significantly to the semiconductor sector.

3.4.4.2 Women in Science, Technology, Engineering, and Mathematics (STEM)

The semiconductor industry’s efforts to engage more women necessitate a nuanced,
multifaceted approach, beginning with an understanding of the inequities present from the early
educational years. Statistics reveal a significant gender imbalance in STEM, rooted in cultural
and educational practices that diverge as early as elementary school. For instance, Lubienski
find that girls may begin to doubt their mathematical abilities by the 3rd grade, a stark contrast
to boys who may develop an overconfidence in their skills around the same age (Lubienski et al.
2013). This early divergence contributes to a significant underrepresentation of women in the
STEM workforce, despite women earning a majority of bachelor's degrees. Specifically, in the
2020-2021 academic year, only 6.7% of women earned degrees in core STEM fields compared
to 26.2% for men, highlighting a critical gap at the end of the STEM education pipeline (Statista
2024).

To address this disparity, it is imperative to reshape early childhood messages around STEM,
making them inclusive and appealing to all demographics, especially girls and the ‘enthused
unfocused.” The National Academy of Engineering’s “Changing the Conversation” report
suggests recasting engineering messaging to resonate with currently disenfranchised
demographics. Furthermore, promoting environmental sustainability within STEM disciplines
resonates strongly with many women, who often seek careers contributing to societal well-
being. Highlighting the role of women in solving environmental challenges through STEM can
inspire a new generation to pursue these fields, breaking down stereotypes and broadening the
spectrum of opportunities.
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Incorporating these insights requires reevaluating legacy educational practices and embracing
an educational paradigm that anticipates the rapidly evolving future. As the EES2 initiative
tackles pressing sustainability challenges, it also presents an opportunity to pioneer an
education and workforce development model that is dynamic and inclusive. Showcasing
successful female professionals and emphasizing the industry’s commitment to environmental
sustainability can inspire and guide aspiring female professionals, fostering a diverse and
vibrant workforce ready to address the complex energy challenges of tomorrow.

3.4.4.3 Early-Stage Developments

This demographic evolution shown in Figure 70 coincides with a critical period in STEM
education and career decision-making in the United States, where interest often wanes in
middle school, particularly among girls and certain minority groups. To counter this trend, it is
essential to introduce STEM initiatives at the K—12 level that are specifically designed to engage
a diverse student population. Improving STEM instruction, providing experiential learning
opportunities, and ensuring access to technology in schools, as well as in afterschool and
summer programs, are vital steps in this direction.

For EES2, recognizing and engaging with this rapidly growing but underutilized ‘enthused
unfocused’ group is crucial. Their engagement represents an opportunity to diversify the STEM
workforce and challenge existing social paradigms. By creating pathways that make engineering
and technology fields more accessible and relatable, EES2 can empower these individuals to
become future leaders in technology. This approach is not just about filling workforce gaps; it's
about cultivating a rich, diverse pool of talent capable of driving innovation and addressing the
complex challenges of our time.

3.4.5 Conclusion for Education and Workforce Development

The Education and Workforce Development chapter has highlighted the critical role of
cultivating a technically skilled and diverse workforce to meet the EES2 energy efficiency goals.
The future of semiconductor and computing innovation hinges on a workforce capable of
understanding, developing, and implementing advanced technologies in a rapidly evolving
landscape.

A comprehensive educational framework is needed, ranging from curriculum development for
emerging technologies to interdisciplinary training programs that emphasize sustainability. Such
programs should align educational outcomes with the specific needs of the semiconductor
industry, ensuring that talent pipelines are built to address next-generation challenges.

Moreover, outreach efforts must prioritize diversity and inclusivity to fully leverage the potential
of all demographics. This will help secure a workforce that is representative of society and
capable of driving innovation forward. Educational pathways should extend beyond traditional
academic structures to include targeted training, certification programs, and industry-aligned
apprenticeships.

By fostering collaboration across industry, academia, and government, and creating educational
programs aligned with industry roadmaps, the EES2 roadmap will help establish a workforce
that is ready to tackle the complexities of energy-efficient microelectronics. Ultimately, these
initiatives will ensure that the industry remains resilient and innovative in its pursuit of a
sustainable and energy-efficient future.
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4 Conclusion

The semiconductor industry faces daunting energy challenges. Already confronted with the end
of Dennard Scaling and its biennial efficiency improvements, the industry must now contend
with explosive data center energy use due to the rise of Al, especially from the growth of natural
language programming (NLP)/large language models (LLMs), which are forecasted to drive
increases in energy use that could double bi-monthly instead of biennially. In less than two
years, LLMs such as ChatGPT have progressed from being a novelty to a commonplace
technology that is a standard iPhone feature. The rapid escalation in energy use of just one
microelectronics computing application, coming on top of increasing crypto mining electricity
use, underscores the urgency of accelerating more energy efficient technologies into the
market.

4.1 A New Moonshot and Space Race

Much like JFK’s famous Moonshot quote about doing difficult things, the ambitious EES2 goal
also serves to organize and measure the best of our energies and skills while similarly providing
many public benefits. By setting a straightforward and familiar goal for the industry (biennial
efficiency improvements), DOE's EES2 Initiative aims to catalyze an energy efficiency “space
race.” As version 1.0 and subsequent roadmaps are published, EES2 hopes the industry will
compete to better and deploy their own versions of near-term “technologies to beat,” as shown
in Figure 71. Just setting the goal seems to have already spurred beneficial competition, as
evidenced by AMD’s announcement of its own goal of 100X efficiency improvement by 2027.
EES2 also aims to bolster competition among researchers—especially government funded
researchers—to beat these technologies for the mid- and long-term. At the same time, working
groups (WGs) in the next versions of the roadmap will race to identify still more ways to co-
design energy efficiency into compute stack technology pathways.

EESZ2 recognizes that the next two decades require a great diversity of technologies and people
who understand how to design and make them. The further development of curriculum and
pedagogy to train and develop the skilled people who can counter the rapidly increasing energy
consumption in computing has only just begun.
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Figure 71. Top energy efficient technologies.
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These 55 technologies were identified at the end of 2023 by the roadmap compute stack adjacent layer co-design
working groups as those most likely to meet the EES2 1,000x goal. Cost-effectiveness and market projections were
considered qualitatively.

4.2 EES2: Putting People and Their Organizations First

This initial release of the EES2 roadmap is the culmination of more than a year of effort by the
EES2 pledging organizations and their personnel who participated in the WGs to frame the
issues, identify candidate technology options, and formulate the solution pathways and action
plans. The EES2 team thoroughly researched the recommended areas and compiled an
extensive bibliography. Though not comprehensive, the technologies put forward in this initial
roadmap cover the spectrum of the compute stack and enabling technologies with clear
potential to achieve EES2 aims. In future versions, as more of the semiconductor innovation
ecosystem joins the EES2 Initiative, even more comprehensive roadmaps will be produced.

As of publication, more than 65 organizations have committed to the ambitious pledge (see
Figure 72), with many actively participating in the roadmap 1.0 WGs. Pledging and roadmap
participation show robust support for the EES2 goals and RD&D agenda from industry leaders,
national laboratory leaders, and other educational, workforce, and outreach institutions. This
broad base of commitment underscores the potential for strong industry-wide participation in
RD&D solicitations aimed at achieving the ambitious objective of enhancing the life-cycle energy
efficiency of semiconductor products by at least 10x in 7 years, 100x in 14 years, and 1,000x in
two decades. Widespread industry backing further suggests that these efforts will benefit from
significant private sector investment, collaboration in education and workforce development, and
cost-share participation, all geared towards realizing the transformative energy efficiency targets
set forth by EES2.
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Figure 72. Pledge signers for EES2 from September 2022— April 2024.

4.3 Technology Results and Co-Design for Efficiency First

The EES2 roadmap highlights the significant factors of energy efficiency improvement possible
across the microelectronics compute stack. Figure 71 graphically illustrates the more
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promising technology options identified in this roadmap by the compute stack co-design
WGs in conjunction with the enabling WGs. The figure presents two key evaluation criteria
used by the WGs: time to maturity and efficiency improvement. Time to maturity refers to
the time required for a technology to achieve a TRL of 6. Efficiency improvement measures
the energy metrics (e.g., energy per bit, energy per switch, memory access) relative to the
current state-of-the-art technologies. Additional information is needed to prioritize the
potential impact of these technologies and to determine how to allocate resources. EES2 is
actively researching some of this information, such as past and current U.S. and global
energy use of SOTA technologies, to be included in future versions. Most non-technical
factors—apart from the EES2 hypothesis that an ambitious industry-wide biennial goal will
drive competition among companies and researchers—are beyond the scope of an R&D
roadmap.

Multiple concerted efforts across the full compute stack are necessary over the next two
decades. Starting at the bottom of the compute stack with materials and devices, there is an
urgent near-term need to consider new materials and device geometries that simultaneously
minimize thermal and mechanical forces as well as improve electrical/electronic performance. In
the mid-term, continued foundational and manufacturing R&D on materials such as carbon
allotropes (graphene and CNTSO0) and new switching methods for devices must accelerate. In
the long term, device research should include exploration of quantum and nature-inspired
approaches and how they can be co-designed across the hardware and full compute stack. In
the short term, both in circuits and architecture as well as advanced packaging and
heterogeneous integration, industry will take the lead—with strong support from NIST, DOD,
NSF, and the CHIPS program—in research on co-design innovations within the
circuit/processor and beyond in the hardware stack.

EES2 will further increase competition among researchers in the near and mid-term by
supporting the measurement of energy efficiency performance of computing and other
microelectronics products. EES2 also will provide benchmarking tools for this efficiency first
approach. Finally, at the top of the stack with algorithms and software, the roadmap shows that
software-driven full stack co-design is most likely needed to reach 1,000x. Such algorithm and
software driven innovations will occur at all time scales, but are especially needed in the long
term. Table 85 and Table 86 below expand upon the short-, mid-, and long-term time scales for
the EES2 compute stack codesign WGs and enabling WGs, respectively.

Table 85. Key Takeaways for the Compute Stack

Key Areas for Energy
Efficiency

Manufacturing Challenges Solution Pathways

Materials and Devices (mid-term)
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. Novel materials such as
2D materials, CNT, and
ferroelectric materials

e  Current CMOS
architecture such as Si-
GAA

e  Future CMOS
alternatives with
transistors using
alternatives for
switching such as
tunneling, spintronic

e Analog devices for
neuromorphic

e  Streamline production of high-
quality novel materials.

e Innovate methods for novel
materials integration.

e  Standardize metrics and protocols
for emerging technologies.

e  Assess thermal stability,
conductivity, and contact
resistance of novel materials.

e  Connect material science with
device engineering.

e Leverage detailed device models
and simulations.

Invest in R&D efforts related to scalability of
high-purity and -quality novel materials.
Create industry-wide benchmarks and testing
protocols to evaluate novel devices and
materials.

Fund dedicated testbeds and prototyping labs
to demonstrate and refine emerging
technologies.

Circuits and Architectures (n

ear term)

e  Compute in and near
memory

e  Domain-specific
architectures

e New lower-energy non-
volatile memory
technologies

. Neuromorphic
computing.

e  Memory access costs

. Prioritize advanced EDA for
improved device architectures.

. Develop new algorithmic, power
distribution, and additional
circuitry changes to bolster new
architectures.

e  Strengthen new device-level
technologies to be on par with
CMOS.

e Increase memory density and
reduce cost of new NVM
compared to DRAM/NAND.

e  Eliminate unnecessary overhead
power consumption and
computational redundancies in
architecture systems.

Improve EDA to enable higher levels of
simulation and discover issues before physical
device production, increase availability of PDKs
for new devices or compute schemes to enable
new device/architecture integration.

Design new architectures along with software to
enable performance improvements with
increased energy efficiency and delve into larger
use cases to enable more cost benefits to
custom architectures.

Continue funding novel device technologies and
concurrent architecture with focus on cost
reduction, density increase, and signal
variability reduction.

Improve instruction set architectures or
instruction level languages and utilize advanced
interconnect fabrics such as CXL to enable
memory pooling.

Advanced Packaging and Heterogenous Integration (near term)

e  Vertically Integrated
devices

e Thermal interface
materials

e Advanced interconnect
for Cu replacement

e  System-level cooling
technologies

e Interconnect scaling

e Implement STCO for advanced
packaging with EDA software.

e Remove excessive heat for
Energy-efficient 3D technology
stacking.

e  Pair novel technologies with state-
of-the-art processors/memory to
show proof of durability and
energy efficiency.

e  Address scaling challenges for
optical interconnects to enable
their use for intra-package and
intra-chip signals.

e Increase the energy efficiency of
memory access.

Improve EDA to enable ADKs for expanded
packaging design and simulation for energy
efficiency optimization and FMEA.

Create a fablet allowing for R&D development of
advanced packaging and heterogeneous
integration technologies, which can alleviate
foundry concerns and enable new technology
acceleration and proof of concept.

Invest in improved thermal interface materials,
heat sinks, and system-level cooling to enable
energy-efficient 3D technologies.

Prioritize miniaturization, monolithic integration,
and cost reduction of electro-optical light
sources, modulators, and detectors.

Enable direct stacking of DRAM or SRAM on
processors to help reduce energy costs of the
most significant bottleneck of computing.

Algorithms and Software (all time scales, but especially long term)
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Algorithms that perform
tasks more efficiently
Algorithms that avoid
data movement
Software that supports
new efficient
architectures

Discover and implement machine

intelligence algorithms that U
achieve the abilities of natural

systems. °
Discover and implement new

solutions for scientific computing .

using machine learning.
Exploit the resources of massively .
parallel computing systems more
effectively. .

Achieve continual, incremental learning in
machine learning systems to avoid retraining.
Achieve efficient machine learning through
hierarchical models.

Enable fast machine learning design
optimization through meta-learning.
Implement fast compiled alternatives for
Python.

Improve automatic parallelization of code to
exploit available machine resources.

Develop domain-specific languages and
frameworks to support emerging architectures.

Key Areas for Energy
Efficiency

Grand Challenges

Power and Control Electronics (very near term)

Table 86. Key Takeaways for Microelectronics Enablers

Solution Pathways

Migrate computing loads to
data centers with available
higher-efficiency equipment
or onsite renewable energy
resources.

Instead of using low-power
modes for idle equipment, cut
power provisions entirely.
Utilize emerging thermal
management strategies to
enable higher power densities
in stacked die and 3D
architectures.

Develop advanced co-design
tools for optimizing power
delivery along with other key
design factors.

Bridge the gap between metrology
and actual device performance.
Challenges with IP constraints and
integration of advanced
characterization techniques.

Future power delivery approaches will
need to be custom fit for circuit
architectures.

Co-design tools require
improvements to evaluate tradeoffs
in the design of complex systems.
Increasing energy density and
dimensionality at the chip level
necessitate improvements in thermal
management.

Computing takes place in non-data
center contexts. Scalable solutions
are needed to address power
management in these locations.

e Develop strategies for resource-aware
compute scheduling.

e Quantify the impact and challenges
associated with idle power reduction
strategies.

e  Pursue RDD&D projects to increase the
commercial readiness of emerging cooling
technologies.

e  Extend the functionality of existing
software tools to enable co-simulation,
reliability investigations, and techno-
economic analysis.

e  Utilize high-performance computing
infrastructure to assess the impact of
changes in device-level energy use on
data center-scale facilities.

Manufacturing Efficiency and Environmental Sustainability (near term)
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e Lower greenhouse gas
emitted processes
Abatement systems

e EUV efficiency
improvements

e Alternative lithography
development such as NIL

Multiple processes use high impact
greenhouse gas with low removal
efficiencies.

Replacement gases that can be used
in place of SFs, NF3, CFx are highly
caustic.

Viability of replacement processes
needs intense scrutiny to test cost
effectiveness and yield impacts on
devices.

Enable NIL for devices requiring less
defect density.

EUV light source is too energy
intensive.

Evaluate novel processes such as thermal
ALE and organic vapor plasma etching,
which can help reduce greenhouse gas
emissions for dry etch but require initial
evaluation on 300 mm wafers.

Create alternative processes replacing
gases such as SFe, NF3, and CIF3 with F2,
SFa4, or others; this will require better
handling because the replacement gases
are no longer inert.

Replace abatement systems with
improved higher removal efficiencies,
which requires only ordering new parts
that do not require subfloor space.

Design innovative EUV light source to
optimize plasma generation to reduce
energy consumption.

Channel R&D efforts toward defect
density reduction methods such as stamp
material optimization.

Metrology and Benchmarking (all time scales)

e Advance 3D metrology by
developing non-destructive,
high-resolution techniques
for complex structures and
interfaces.

e Innovate metrology for
precise thermal property
measurements of
heterogenous materials.

e Apply Al/ML to improve
precision and efficiency in
metrology processes.

e  Establish continuous and
adaptable benchmarking
standards for evaluating
energy efficiency of new
technologies.

e  Complexity in metrology due to
3D stacking and heterogeneous
integration.

e  Traditional methods are
inadequate for emerging novel
devices.

e Need for non-destructive
techniques and integration with
Al/ML.

e  Bridging the gap between
metrology and actual device
performance.

e  Challenges with IP constraints
and integration of advanced
characterization techniques.

e Develop and adopt advanced, non-
destructive metrology methods
tailored for complex structures.

e  Establish comprehensive
benchmarking standards for
consistent technology evaluation.

° Utilize Al/ML algorithms to refine
metrology tools for adaptability and
precision.

e Innovate in metrology to align test
structures with actual device
performance.

e  Provide broader access to diverse test
samples while respecting IP concerns.

Education and Workforce Development (all time scales but especially long term)

e Reach people’s hearts and
minds on the importance of
energy efficiency.

e  Curriculum development for
emerging technologies.

e  Educational pathways for
advanced microelectronics.

e Interdisciplinary training for
sustainability in tech.

Align educational outcomes with
semiconductor industry needs.
Develop talent for next-generation
technology roles.

Ensure diversity and inclusivity in
STEM fields.

Create educational programs that align
with industry roadmaps.

Implement targeted training for specialized
microelectronics roles.

Develop outreach programs to attract a
diverse workforce.
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4.4 The Future

Version 1.0 of the EES2 roadmap is the beginning of a two-decade effort to take energy
efficiency scaling from historical fact to future reality. The exponential demand for computing
and the critical need to curb emissions urgently necessitate an acceleration and expansion of
these initiatives. While this report documents myriad potential efficiency improvements across
fifty-five technologies, achieving their full benefits requires an integrated approach that
emphasizes software-driven co-design across the entire technology stack. Ultimately, EES2
hopes to reboot the energy efficiency doubling pace of Dennard scaling doubling efficiency
every two years—with the goal of reaching 1,000x more in the next twenty years.

Plans for roadmap 2.0 are already underway. As EES2 recruits more industrial, academic, and
national laboratory members of the innovation ecosystem, the initiative will not only have more
policy impact, it will also boast even broader technical expertise among the WGs. Now that the
first roadmap is published, EES2 will actively turn to broaden its recruiting into new
microelectronics application sectors, such as communications. In addition, while EES2 started
with electronics and electrons, it will also broaden to promising new information carriers, such
the photons used in optoelectronics/ photonics. EES2 already includes pledgers whose
research includes long-term transformational technology areas such as quantum computing as
well as the latest advances in nature-inspired architectures. EES2 will work with these pledgers
to help recruit more from their respective sectors and to attract more volunteers for the version
2.0 WGs.

While much can change before the start of version 2.0 of the roadmap in spring 2025, future
WGs will continue to build upon a solid base of peer-reviewed research while continuing to work
with EES2 pledgers to lower barriers toward immediate deployment of technologies for biennial
microelectronics energy efficiency doubling. This dual R&D and deployment strategy ensures
flexibility and responsiveness to emerging technologies and market shifts, thereby fostering a
sustainable evolution of the microelectronics sector.

As the EES2 Initiative continues to grow and build momentum for massive improvements in
computing energy efficiency, the EES2 team will further work with stakeholders in
microelectronics and related applications to develop the technology base and to assess
progress toward the goal every 2 years.

This roadmap is not intended to serve as a forecast or to pick winners and losers among
technologies. Rather, it is the opening salvo in a new energy efficiency “space race,” where
instead of outer space, the EES2 team explores the fascinating realm of increasingly tiny and
ultra energy efficient information systems. The roadmap sets a high bar to challenge and
motivate technology developers and to counteract grim forecasts that humanity cannot achieve
the clean energy transition due to rising computing energy use trends. The semiconductor
industry’s inspiring past successes in improving energy efficiency indicate that ambitious EES2
efficiency goals can be met as well. Let’s do it now.
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